These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 10775138

  • 1. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S, Tarbell JM.
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [Abstract] [Full Text] [Related]

  • 2. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S, Tarbell JM.
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [Abstract] [Full Text] [Related]

  • 3. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S, Tarbell JM.
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [Abstract] [Full Text] [Related]

  • 4. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M, Jalali P, Konttinen YT, Sarkomaa P.
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [Abstract] [Full Text] [Related]

  • 5. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.
    Tada S, Tarbell JM.
    Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339
    [Abstract] [Full Text] [Related]

  • 6. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y, Rumschitzki D, Chien S, Weinbaum S.
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [Abstract] [Full Text] [Related]

  • 7. Effect of the shape and configuration of smooth muscle cells on the diffusion of ATP through the arterial wall.
    Dabagh M, Jalali P, Sarkomaa P.
    Med Biol Eng Comput; 2007 Nov; 45(11):1005-14. PubMed ID: 17634760
    [Abstract] [Full Text] [Related]

  • 8. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M, Jalali P, Konttinen YT.
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [Abstract] [Full Text] [Related]

  • 9. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells.
    Wang DM, Tarbell JM.
    J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390
    [Abstract] [Full Text] [Related]

  • 10. Heterogeneous Cellular Contributions to Elastic Laminae Formation in Arterial Wall Development.
    Lin CJ, Staiculescu MC, Hawes JZ, Cocciolone AJ, Hunkins BM, Roth RA, Lin CY, Mecham RP, Wagenseil JE.
    Circ Res; 2019 Nov 08; 125(11):1006-1018. PubMed ID: 31590613
    [Abstract] [Full Text] [Related]

  • 11. Numerical simulation of mass transfer in porous media of blood vessel walls.
    Huang ZJ, Tarbell JM.
    Am J Physiol; 1997 Jul 08; 273(1 Pt 2):H464-77. PubMed ID: 9249521
    [Abstract] [Full Text] [Related]

  • 12. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N, Ando J, Chen X, Hisada T.
    J Biomech Eng; 2007 Jun 08; 129(3):374-85. PubMed ID: 17536904
    [Abstract] [Full Text] [Related]

  • 13. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study.
    Karner G, Perktold K.
    J Biomech; 2000 Jun 08; 33(6):709-15. PubMed ID: 10807992
    [Abstract] [Full Text] [Related]

  • 14. Macromolecular transport in the arterial wall: alternative models for estimating barriers.
    Lee K, Saidel GM, Penn MS.
    Ann Biomed Eng; 2005 Nov 08; 33(11):1491-503. PubMed ID: 16341918
    [Abstract] [Full Text] [Related]

  • 15. Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model.
    Wang S, Tarbell JM.
    Arterioscler Thromb Vasc Biol; 2000 Oct 08; 20(10):2220-5. PubMed ID: 11031207
    [Abstract] [Full Text] [Related]

  • 16. Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement.
    Masuda H, Zhuang YJ, Singh TM, Kawamura K, Murakami M, Zarins CK, Glagov S.
    Arterioscler Thromb Vasc Biol; 1999 Oct 08; 19(10):2298-307. PubMed ID: 10521357
    [Abstract] [Full Text] [Related]

  • 17. The effects of elastic fiber protein insufficiency and treatment on the modulus of arterial smooth muscle cells.
    Gabriela Espinosa M, Gardner WS, Bennett L, Sather BA, Yanagisawa H, Wagenseil JE.
    J Biomech Eng; 2014 Feb 08; 136(2):021030. PubMed ID: 24322348
    [Abstract] [Full Text] [Related]

  • 18. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.
    Zheng X, Ren J.
    J Theor Biol; 2016 Mar 21; 393():118-26. PubMed ID: 26780646
    [Abstract] [Full Text] [Related]

  • 19. Subnormal shear stress-induced intimal thickening requires medial smooth muscle cell proliferation and migration.
    Sho M, Sho E, Singh TM, Komatsu M, Sugita A, Xu C, Nanjo H, Zarins CK, Masuda H.
    Exp Mol Pathol; 2002 Apr 21; 72(2):150-60. PubMed ID: 11890724
    [Abstract] [Full Text] [Related]

  • 20. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.
    Dabagh M, Jalali P, Tarbell JM.
    Am J Physiol Heart Circ Physiol; 2009 Sep 21; 297(3):H983-96. PubMed ID: 19592615
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.