These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 10779871
1. Development of a xylitol biosensor composed of xylitol dehydrogenase and diaphorase. Takamizawa K, Uchida S, Hatsu M, Suzuki T, Kawai K. Can J Microbiol; 2000 Apr; 46(4):350-7. PubMed ID: 10779871 [Abstract] [Full Text] [Related]
2. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K. Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [Abstract] [Full Text] [Related]
3. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii. Mayerhoff ZD, Roberto IC, Franco TT. Appl Microbiol Biotechnol; 2006 May; 70(6):761-7. PubMed ID: 16505992 [Abstract] [Full Text] [Related]
4. Characterization of the AXDH gene and the encoded xylitol dehydrogenase from the dimorphic yeast Arxula adeninivorans. Böer E, Wartmann T, Schmidt S, Bode R, Gellissen G, Kunze G. Antonie Van Leeuwenhoek; 2005 Apr; 87(3):233-43. PubMed ID: 15803389 [Abstract] [Full Text] [Related]
5. Purification and properties of the xylitol dehydrogenase from Pullularia pullulans. Sugai JK, Veiga LA. An Acad Bras Cienc; 1981 Mar; 53(1):183-93. PubMed ID: 7197134 [Abstract] [Full Text] [Related]
6. Effect of D-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. Ikeuchi T, Kiritani R, Azuma M, Ooshima H. J Basic Microbiol; 2000 Mar; 40(3):167-75. PubMed ID: 10957958 [Abstract] [Full Text] [Related]
8. Cloning and characterization of a novel NAD+ -dependent xylitol dehydrogenase from Gluconobacter oxydans CGMCC 1. 637. Lin Y, Xie Z, Zhang J, Bao W, Pan H, Li B. Wei Sheng Wu Xue Bao; 2012 Jun 04; 52(6):726-35. PubMed ID: 22934353 [Abstract] [Full Text] [Related]
9. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Lima LH, das Graças de Almeida Felipe M, Vitolo M, Torres FA. Appl Microbiol Biotechnol; 2004 Nov 04; 65(6):734-8. PubMed ID: 15107950 [Abstract] [Full Text] [Related]
10. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Sukpipat W, Komeda H, Prasertsan P, Asano Y. J Biosci Bioeng; 2017 Jan 04; 123(1):20-27. PubMed ID: 27506274 [Abstract] [Full Text] [Related]
11. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Sene L, Felipe MG, Silva SS, Vitolo M. Appl Biochem Biotechnol; 2001 Jan 04; 91-93():671-80. PubMed ID: 11963895 [Abstract] [Full Text] [Related]
12. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5). Pival SL, Klimacek M, Kratzer R, Nidetzky B. FEBS Lett; 2008 Dec 10; 582(29):4095-9. PubMed ID: 19026644 [Abstract] [Full Text] [Related]
13. Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Sene L, Vitolo M, Felipe MG, Silva SS. Appl Biochem Biotechnol; 2000 Dec 10; 84-86():371-80. PubMed ID: 10849803 [Abstract] [Full Text] [Related]
14. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN, Bolotnikova OI, Mikhaĭlova NP, Nemova NN, Ginak AI. Mikrobiologiia; 2004 Dec 10; 73(2):163-8. PubMed ID: 15198025 [Abstract] [Full Text] [Related]
15. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase. Kahle C, Schneider KH, Giffhorn F. J Gen Microbiol; 1992 Jun 10; 138(6):1277-81. PubMed ID: 1527498 [Abstract] [Full Text] [Related]
16. Identification, purification, and characterization of a D-arabinitol-specific dehydrogenase from Candida tropicalis. Quong MW, Miyada CG, Switchenko AC, Goodman TC. Biochem Biophys Res Commun; 1993 Nov 15; 196(3):1323-9. PubMed ID: 8250887 [Abstract] [Full Text] [Related]
17. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum. Singh A, Schügerl K. Biochem Int; 1992 Nov 15; 28(3):481-8. PubMed ID: 1482390 [Abstract] [Full Text] [Related]
18. Enhancement of xylitol productivity and yield using a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis under fully aerobic conditions. Ko BS, Rhee CH, Kim JH. Biotechnol Lett; 2006 Aug 15; 28(15):1159-62. PubMed ID: 16810450 [Abstract] [Full Text] [Related]
19. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B, Brüggler K, Kratzer R, Mayr P. J Agric Food Chem; 2003 Dec 31; 51(27):7930-5. PubMed ID: 14690376 [Abstract] [Full Text] [Related]