These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 10797613
1. Evaluation of glutathione-sensitive fluorescent dyes in cortical culture. Tauskela JS, Hewitt K, Kang LP, Comas T, Gendron T, Hakim A, Hogan M, Durkin J, Morley P. Glia; 2000 Jun; 30(4):329-41. PubMed ID: 10797613 [Abstract] [Full Text] [Related]
2. Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Sebastià J, Cristòfol R, Martín M, Rodríguez-Farré E, Sanfeliu C. Cytometry A; 2003 Jan; 51(1):16-25. PubMed ID: 12500301 [Abstract] [Full Text] [Related]
3. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Kaur P, Aschner M, Syversen T. Toxicology; 2007 Feb 12; 230(2-3):164-77. PubMed ID: 17169475 [Abstract] [Full Text] [Related]
4. Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution. Chatterjee S, Noack H, Possel H, Keilhoff G, Wolf G. Glia; 1999 Aug 12; 27(2):152-61. PubMed ID: 10417814 [Abstract] [Full Text] [Related]
5. Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR. J Neurosci Res; 2001 Dec 01; 66(5):873-84. PubMed ID: 11746414 [Abstract] [Full Text] [Related]
6. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Shanker G, Aschner JL, Syversen T, Aschner M. Brain Res Mol Brain Res; 2004 Sep 10; 128(1):48-57. PubMed ID: 15337317 [Abstract] [Full Text] [Related]
7. The antioxidant glutathione in the fish cell lines EPC and BCF-2: response to model pro-oxidants as measured by three different fluorescent dyes. Jos A, Cameán AM, Pflugmacher S, Segner H. Toxicol In Vitro; 2009 Apr 10; 23(3):546-53. PubMed ID: 19444932 [Abstract] [Full Text] [Related]
8. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Gegg ME, Clark JB, Heales SJ. Brain Res; 2005 Mar 02; 1036(1-2):1-6. PubMed ID: 15725395 [Abstract] [Full Text] [Related]
9. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Chandra D, Ramana KV, Wang L, Christensen BN, Bhatnagar A, Srivastava SK. Invest Ophthalmol Vis Sci; 2002 Jul 02; 43(7):2285-92. PubMed ID: 12091429 [Abstract] [Full Text] [Related]
10. Differential specificity of monochlorobimane for isozymes of human and rodent glutathione S-transferases. Cook JA, Iype SN, Mitchell JB. Cancer Res; 1991 Mar 15; 51(6):1606-12. PubMed ID: 1998951 [Abstract] [Full Text] [Related]
11. 5'-deiodinase activity in cultured glial and fibroblastic cells from the cerebella of newborn rats. Pruvost V, Valentin S, Cheynel I, Vigouroux E, Bézine MF. Horm Metab Res; 1999 Nov 15; 31(11):591-6. PubMed ID: 10598825 [Abstract] [Full Text] [Related]
12. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. deAzevedo LC, Fallet C, Moura-Neto V, Daumas-Duport C, Hedin-Pereira C, Lent R. J Neurobiol; 2003 Jun 15; 55(3):288-98. PubMed ID: 12717699 [Abstract] [Full Text] [Related]
13. Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture. Gallo F, Morale MC, Spina-Purrello V, Tirolo C, Testa N, Farinella Z, Avola R, Beaudet A, Marchetti B. Synapse; 2000 Jun 15; 36(4):233-53. PubMed ID: 10819902 [Abstract] [Full Text] [Related]
14. Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol. Rathinam ML, Watts LT, Stark AA, Mahimainathan L, Stewart J, Schenker S, Henderson GI. J Neurochem; 2006 Mar 15; 96(5):1289-300. PubMed ID: 16464233 [Abstract] [Full Text] [Related]
15. Developmental changes in the cellular distribution of glutathione and glutathione S-transferases in the murine nervous system. Beiswanger CM, Diegmann MH, Novak RF, Philbert MA, Graessle TL, Reuhl KR, Lowndes HE. Neurotoxicology; 1995 Mar 15; 16(3):425-40. PubMed ID: 8584275 [Abstract] [Full Text] [Related]
16. 5-(Pentafluorobenzoylamino)fluorescein: A selective substrate for the determination of glutathione concentration and glutathione S-transferase activity. Arttamangkul S, Bhalgat MK, Haugland RP, Diwu Z, Liu J, Klaubert DH, Haugland RP. Anal Biochem; 1999 May 01; 269(2):410-7. PubMed ID: 10222018 [Abstract] [Full Text] [Related]
17. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes. King N, Korolchuk S, McGivan JD, Suleiman MS. J Pharmacol Toxicol Methods; 2004 May 01; 50(3):215-22. PubMed ID: 15519908 [Abstract] [Full Text] [Related]
18. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Brain Res Mol Brain Res; 2004 May 19; 124(2):114-23. PubMed ID: 15135219 [Abstract] [Full Text] [Related]
19. Formation and rapid export of the monochlorobimane-glutathione conjugate in cultured rat astrocytes. Waak J, Dringen R. Neurochem Res; 2006 Dec 19; 31(12):1409-16. PubMed ID: 17089195 [Abstract] [Full Text] [Related]