These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Displacement correction factor for fast-neutron dosimetry in a tissue-equivalent phantom. Shapiro P, Attix FH, August LS, Theus RB, Rogers CC. Med Phys; 1976 Jan; 3(2):87-90. PubMed ID: 817124 [Abstract] [Full Text] [Related]
8. European protocol for neutron dosimetry for external beam therapy. European Clinical Neutron Dosimetry Group (ECNEU). Broerse JJ, Mijnheer BJ, Williams JR. Br J Radiol; 1981 Oct; 54(646):882-98. PubMed ID: 6794701 [No Abstract] [Full Text] [Related]
9. Dosimetry of clinical neutron and proton beams: an overview of recommendations. Vynckier S, International Atomic Energy Agency, International Commission on Radiation Units and Measurements. Radiat Prot Dosimetry; 2004 Oct; 110(1-4):565-72. PubMed ID: 15353710 [Abstract] [Full Text] [Related]
10. [Principle of neutron teletherapy with the Soviet U-120 cyclotron]. Letov VN, Bel'skiĭ EM, Ievlev SM, Komov AI, Protasevich ET. Med Radiol (Mosk); 1987 Jun; 32(6):27-33. PubMed ID: 3110536 [Abstract] [Full Text] [Related]
11. Dose levels due to neutrons in the vicinity of high-energy medical accelerators. McGinley PH, Wood M, Mills M, Rodriguez R. Med Phys; 1976 Jun; 3(6):397-402. PubMed ID: 826776 [Abstract] [Full Text] [Related]
12. Build-up and depth-dose characteristics of different fast neutron beams relevant for radiotherapy. Mijnheer BJ. Br J Radiol; 1978 Feb; 51(602):122-6. PubMed ID: 414808 [Abstract] [Full Text] [Related]
13. [Neutron flow measurements in the d(14) + Be neutron radiation field from the cyclotron in Essen]. Pöller F, Sauerwein W, Rau D, Wagner FM, Olthoff K, Rassow J, Sack H. Strahlenther Onkol; 1990 Jun; 166(6):426-9. PubMed ID: 2363106 [Abstract] [Full Text] [Related]
14. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J, Booz J. Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [Abstract] [Full Text] [Related]
15. Dosimetry intercomparisons between fast-neutron radiotherapy facilities. Smith AR, Almond PR. Med Phys; 1975 Jan; 2(4):195-200. PubMed ID: 806775 [Abstract] [Full Text] [Related]
16. Dosimetry of low-energy neutrons using low-pressure proportional counters. Schuhmacher H, Alberts WG, Menzel HG, Bühler G. Radiat Res; 1987 Jul; 111(1):1-13. PubMed ID: 3602347 [Abstract] [Full Text] [Related]
17. Review of clinical results of fast neutron therapy in the USA. Peters LJ, Maor MH, Laramore GE, Griffin TW, Hendrickson FR. Strahlentherapie; 1985 Dec; 161(12):731-8. PubMed ID: 4082208 [Abstract] [Full Text] [Related]
18. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE. Booz J, Fidorra J. Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510 [Abstract] [Full Text] [Related]
19. Effect of variation in the energy spectrum of a cyclotron-produced fast neutron beam in a phantom relevant to its application in radiotherapy. Bonnett DE, Parnell CJ. Br J Radiol; 1982 Jan; 55(649):48-55. PubMed ID: 6797499 [Abstract] [Full Text] [Related]
20. Application of semiconductors for dosimetry of fast-neutron therapy beam. Yudelev M, Alyousef K, Brandon J, Perevertailo V, Lerch ML, Rosenfeld AB. Radiat Prot Dosimetry; 2004 Jan; 110(1-4):573-8. PubMed ID: 15353711 [Abstract] [Full Text] [Related] Page: [Next] [New Search]