These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
453 related items for PubMed ID: 10801398
1. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Stillman JH, Somero GN. Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398 [Abstract] [Full Text] [Related]
2. Causes and consequences of thermal tolerance limits in rocky intertidal porcelain crabs, genus petrolisthes. Stillman JH. Integr Comp Biol; 2002 Aug; 42(4):790-6. PubMed ID: 21708777 [Abstract] [Full Text] [Related]
3. Evolutionary history and adaptive significance of respiratory structures on the legs of intertidal porcelain crabs, genus Petrolisthes. Stillman JH. Physiol Biochem Zool; 2000 Aug; 73(1):86-96. PubMed ID: 10685910 [Abstract] [Full Text] [Related]
4. Molecular phylogeny of Eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. Stillman JH, Reeb CA. Mol Phylogenet Evol; 2001 May; 19(2):236-45. PubMed ID: 11341806 [Abstract] [Full Text] [Related]
5. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. Ronges D, Walsh JP, Sinclair BJ, Stillman JH. J Exp Biol; 2012 Jun 01; 215(Pt 11):1824-36. PubMed ID: 22573761 [Abstract] [Full Text] [Related]
6. Neural thermal performance in porcelain crabs, genus Petrolisthes. Miller NA, Stillman JH. Physiol Biochem Zool; 2012 Jun 01; 85(1):29-39. PubMed ID: 22237287 [Abstract] [Full Text] [Related]
7. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. Somero GN. J Exp Biol; 2010 Mar 15; 213(6):912-20. PubMed ID: 20190116 [Abstract] [Full Text] [Related]
8. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response. Tomanek L. Physiol Biochem Zool; 2008 Mar 15; 81(6):709-17. PubMed ID: 18844483 [Abstract] [Full Text] [Related]
9. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus tegula) from different tidal heights. Tomanek L, Somero GN. Physiol Biochem Zool; 2000 Mar 15; 73(2):249-56. PubMed ID: 10801403 [Abstract] [Full Text] [Related]
10. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. Paganini AW, Miller NA, Stillman JH. J Exp Biol; 2014 Nov 15; 217(Pt 22):3974-80. PubMed ID: 25392458 [Abstract] [Full Text] [Related]
11. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation. Anestis A, Pörtner HO, Lazou A, Michaelidis B. J Exp Biol; 2008 Sep 15; 211(Pt 17):2889-98. PubMed ID: 18723548 [Abstract] [Full Text] [Related]
12. Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (genus Tegula): implications for vertical zonation. Stenseng E, Braby CE, Somero GN. Biol Bull; 2005 Apr 15; 208(2):138-44. PubMed ID: 15837963 [Abstract] [Full Text] [Related]
13. Molecular support for marine sculpin (Cottidae; Oligocottinae) diversification during the transition from the subtidal to intertidal habitat in the Northeastern Pacific Ocean. Ramon ML, Knope ML. Mol Phylogenet Evol; 2008 Feb 15; 46(2):475-83. PubMed ID: 18248743 [Abstract] [Full Text] [Related]
14. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA. Am Nat; 2011 Oct 15; 178 Suppl 1():S80-96. PubMed ID: 21956094 [Abstract] [Full Text] [Related]
15. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability. Tomanek L. J Exp Biol; 2005 Aug 15; 208(Pt 16):3133-43. PubMed ID: 16081611 [Abstract] [Full Text] [Related]
16. Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. Stillman J, Somero G. J Exp Biol; 1996 Aug 15; 199(Pt 8):1845-55. PubMed ID: 9319758 [Abstract] [Full Text] [Related]
17. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Jumbam KR, Jackson S, Terblanche JS, McGeoch MA, Chown SL. J Insect Physiol; 2008 Jun 15; 54(6):1008-14. PubMed ID: 18534612 [Abstract] [Full Text] [Related]
18. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes. Stillman JH, Tagmount A. Mol Ecol; 2009 Oct 15; 18(20):4206-26. PubMed ID: 19765222 [Abstract] [Full Text] [Related]
19. Variation in the heat shock response and its implication for predicting the effect of global climate change on species' biogeographical distribution ranges and metabolic costs. Tomanek L. J Exp Biol; 2010 Mar 15; 213(6):971-9. PubMed ID: 20190122 [Abstract] [Full Text] [Related]
20. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish. Vinagre C, Leal I, Mendonça V, Flores AA. J Therm Biol; 2015 Jan 15; 47():19-25. PubMed ID: 25526650 [Abstract] [Full Text] [Related] Page: [Next] [New Search]