These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 10807993

  • 1. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T, Rodgers VG, Frazin LJ, Chandran KB.
    J Biomech; 2000 Jun; 33(6):717-28. PubMed ID: 10807993
    [Abstract] [Full Text] [Related]

  • 2. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T, Rodgers VG, Frazin LJ, Chandran KB.
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [Abstract] [Full Text] [Related]

  • 3. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM, Sung HW, Burlson AC, Yoganathan AP.
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [Abstract] [Full Text] [Related]

  • 4. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T.
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [Abstract] [Full Text] [Related]

  • 5. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D, Chen JY.
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [Abstract] [Full Text] [Related]

  • 6. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S, Kemmerling EMC.
    Biomed Eng Online; 2018 May 30; 17(1):66. PubMed ID: 29843730
    [Abstract] [Full Text] [Related]

  • 7. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA, Friedman MH.
    Ann Biomed Eng; 2000 Mar 30; 28(3):302-8. PubMed ID: 10784094
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Numerical simulation of blood flow in femoral perfusion: comparison between side-armed femoral artery perfusion and direct femoral artery perfusion.
    Kitamura S, Shirota M, Fukuda W, Inamura T, Fukuda I.
    J Artif Organs; 2016 Dec 30; 19(4):336-342. PubMed ID: 27256363
    [Abstract] [Full Text] [Related]

  • 10. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z, Yang WJ.
    J Biomech Eng; 1993 Aug 30; 115(3):306-15. PubMed ID: 8231147
    [Abstract] [Full Text] [Related]

  • 11. Reconstruction of blood flow patterns in human arteries.
    Xu XY, Long Q, Collins MW, Bourne M, Griffith TM.
    Proc Inst Mech Eng H; 1999 Aug 30; 213(5):411-21. PubMed ID: 10581968
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [Calculation of the linear blood flow velocity in the aorta and its branches].
    Orlov AG.
    Kardiologiia; 1967 Aug 30; 7(8):112-5. PubMed ID: 4891754
    [No Abstract] [Full Text] [Related]

  • 16. Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch.
    Del Gaudio C, Morbiducci U, Grigioni M.
    Int J Artif Organs; 2006 Jul 30; 29(7):709-18. PubMed ID: 16874678
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.