These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 10811225

  • 21. Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers.
    Xie J, Han X, Wang W, Zhou X, Lin J.
    J Hazard Mater; 2017 Oct 05; 339():347-353. PubMed ID: 28668752
    [Abstract] [Full Text] [Related]

  • 22. Reduction of ferric green rust by Shewanella putrefaciens.
    Jorand F, Zegeye A, Landry F, Ruby C.
    Lett Appl Microbiol; 2007 Nov 05; 45(5):515-21. PubMed ID: 17868312
    [Abstract] [Full Text] [Related]

  • 23. [Anaerobic humus respiration by Shewanella cinica D14T].
    Xu ZC, Hong YG, Luo W, Chen XJ, Sun GP, Xu MY, Guo J, Cen YH.
    Wei Sheng Wu Xue Bao; 2006 Dec 05; 46(6):973-8. PubMed ID: 17302164
    [Abstract] [Full Text] [Related]

  • 24. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA.
    Maier TM, Myers CR.
    J Bacteriol; 2001 Aug 05; 183(16):4918-26. PubMed ID: 11466298
    [Abstract] [Full Text] [Related]

  • 25. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32.
    Zuo H, Kukkadapu R, Zhu Z, Ni S, Huang L, Zeng Q, Liu C, Dong H.
    Sci Total Environ; 2020 Nov 01; 741():140213. PubMed ID: 32603937
    [Abstract] [Full Text] [Related]

  • 26. Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp.
    Neal AL, Dublin SN, Taylor J, Bates DJ, Burns JL, Apkarian R, DiChristina TJ.
    Biomacromolecules; 2007 Jan 01; 8(1):166-74. PubMed ID: 17206803
    [Abstract] [Full Text] [Related]

  • 27. Humic acids facilitated microbial reduction of polymeric Pu(IV) under anaerobic conditions.
    Xie J, Liang W, Lin J, Zhou X, Li M.
    Sci Total Environ; 2018 Jan 01; 610-611():1321-1328. PubMed ID: 28851152
    [Abstract] [Full Text] [Related]

  • 28. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds.
    Cervantes FJ, van der Velde S, Lettinga G, Field JA.
    Biodegradation; 2000 Jan 01; 11(5):313-21. PubMed ID: 11487061
    [Abstract] [Full Text] [Related]

  • 29. An elusive electron shuttle from a facultative anaerobe.
    Mevers E, Su L, Pishchany G, Baruch M, Cornejo J, Hobert E, Dimise E, Ajo-Franklin CM, Clardy J.
    Elife; 2019 Jun 24; 8():. PubMed ID: 31232690
    [Abstract] [Full Text] [Related]

  • 30. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A, Benz M, Schink B, Brune A.
    FEMS Microbiol Ecol; 2004 Jan 01; 47(1):85-92. PubMed ID: 19712349
    [Abstract] [Full Text] [Related]

  • 31. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors.
    Li R, Tiedje JM, Chiu C, Worden RM.
    Environ Sci Technol; 2012 Mar 06; 46(5):2813-20. PubMed ID: 22324484
    [Abstract] [Full Text] [Related]

  • 32. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1.
    Myers CR, Carstens BP, Antholine WE, Myers JM.
    J Appl Microbiol; 2000 Jan 06; 88(1):98-106. PubMed ID: 10735248
    [Abstract] [Full Text] [Related]

  • 33. A rapid mutant screening technique for detection of technetium [Tc(VII)] reduction-deficient mutants of Shewanella oneidensis MR-1.
    Payne AN, Dichristina TJ.
    FEMS Microbiol Lett; 2006 Jun 06; 259(2):282-7. PubMed ID: 16734791
    [Abstract] [Full Text] [Related]

  • 34. Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12.
    Hong Y, Chen X, Guo J, Xu Z, Xu M, Sun G.
    Appl Microbiol Biotechnol; 2007 Feb 06; 74(1):230-8. PubMed ID: 17043816
    [Abstract] [Full Text] [Related]

  • 35. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.
    Middleton SS, Latmani RB, Mackey MR, Ellisman MH, Tebo BM, Criddle CS.
    Biotechnol Bioeng; 2003 Sep 20; 83(6):627-37. PubMed ID: 12889027
    [Abstract] [Full Text] [Related]

  • 36. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.
    Nealson KH, Moser DP, Saffarini DA.
    Appl Environ Microbiol; 1995 Apr 20; 61(4):1551-4. PubMed ID: 11536689
    [Abstract] [Full Text] [Related]

  • 37. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella.
    Brutinel ED, Gralnick JA.
    Appl Microbiol Biotechnol; 2012 Jan 20; 93(1):41-8. PubMed ID: 22072194
    [Abstract] [Full Text] [Related]

  • 38. Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth.
    Rezaïki L, Lamberet G, Derré A, Gruss A, Gaudu P.
    Mol Microbiol; 2008 Mar 20; 67(5):947-57. PubMed ID: 18194159
    [Abstract] [Full Text] [Related]

  • 39. Electron shuttles in biotechnology.
    Watanabe K, Manefield M, Lee M, Kouzuma A.
    Curr Opin Biotechnol; 2009 Dec 20; 20(6):633-41. PubMed ID: 19833503
    [Abstract] [Full Text] [Related]

  • 40. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM, Fryer BJ, Weisener CG.
    Environ Sci Technol; 2009 Nov 01; 43(21):8086-91. PubMed ID: 19924927
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.