These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Glycerol assimilation by a mutant of Rhodopseudomonas capsulata. Lueking D, Tokuhisa D, Sojka G. J Bacteriol; 1973 Sep; 115(3):897-903. PubMed ID: 4728273 [Abstract] [Full Text] [Related]
3. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. Ruch FE, Lin EC. J Bacteriol; 1975 Oct; 124(1):348-52. PubMed ID: 170247 [Abstract] [Full Text] [Related]
4. Kinase replacement by a dehydrogenase for Escherichia coli glycerol utilization. St Martin EJ, Freedberg WB, Lin EC. J Bacteriol; 1977 Sep; 131(3):1026-8. PubMed ID: 197059 [Abstract] [Full Text] [Related]
5. Regulation of glycerol catabolism in Klebsiella aerogenes. Ruch FE, Lengeler J, Lin EC. J Bacteriol; 1974 Jul; 119(1):50-6. PubMed ID: 4366250 [Abstract] [Full Text] [Related]
6. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. Forage RG, Lin EC. J Bacteriol; 1982 Aug; 151(2):591-9. PubMed ID: 6284704 [Abstract] [Full Text] [Related]
7. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role. Weinhouse H, Benziman M. J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117 [Abstract] [Full Text] [Related]
13. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. Kistler WS, Lin EC. J Bacteriol; 1971 Dec; 108(3):1224-34. PubMed ID: 4945192 [Abstract] [Full Text] [Related]
14. Glycerol metabolism in Rhizobium. Arias A, Martinez-Drets G. Can J Microbiol; 1976 Feb; 22(2):150-3. PubMed ID: 1260522 [Abstract] [Full Text] [Related]
15. Glycerol kinase as a substitute for dihydroxyacetone kinase in a mutant of Klebsiella pneumoniae. Jin RZ, Forage RG, Lin EC. J Bacteriol; 1982 Dec; 152(3):1303-7. PubMed ID: 6292169 [Abstract] [Full Text] [Related]
17. Glycerol utilization by a mutant of Rhodopseudomonas capsulata. Lueking D, Pike L, Sojka G. J Bacteriol; 1976 Feb; 125(2):750-2. PubMed ID: 1245471 [Abstract] [Full Text] [Related]
18. sn-glycerol-1-phosphate-forming activities in Archaea: separation of archaeal phospholipid biosynthesis and glycerol catabolism by glycerophosphate enantiomers. Nishihara M, Yamazaki T, Oshima T, Koga Y. J Bacteriol; 1999 Feb; 181(4):1330-3. PubMed ID: 9973362 [Abstract] [Full Text] [Related]
19. The effect of adenosine triphosphate on phosphoglycerate mutase activity from Hyphomicrobium X and Pseudomonas AM1 grown on reduced one-carbon compounds. Hill B, Attwood MM. J Gen Microbiol; 1976 Dec; 97(2):335-8. PubMed ID: 188972 [No Abstract] [Full Text] [Related]
20. Improvement of bacterial hydrogen production by ATP in mixed organic compounds extracted from Rhodobacter sphaeroides aerobically cultured under dark conditions. Lee HJ, Jang A, Park JM, Kim YH, Chung BW, Min J. Bioresour Technol; 2012 Nov; 123():678-81. PubMed ID: 22939604 [Abstract] [Full Text] [Related] Page: [Next] [New Search]