These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 10818639

  • 1. Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method.
    Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N.
    Biorheology; 1999; 36(5-6):411-23. PubMed ID: 10818639
    [Abstract] [Full Text] [Related]

  • 2. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A, Meiselman HJ, Meyerstein D, Meyerstein N.
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [Abstract] [Full Text] [Related]

  • 3. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A, Meyerstein D, Meiselman HJ, Meyerstein N.
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [Abstract] [Full Text] [Related]

  • 4. Study of red blood cell aggregation by admittance measurements.
    Pribush A, Meyerstein D, Meyerstein N.
    Biorheology; 1996; 33(2):139-51. PubMed ID: 8679961
    [Abstract] [Full Text] [Related]

  • 5. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A, Meyerstein D, Meyerstein N.
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [Abstract] [Full Text] [Related]

  • 6. Simultaneous monitoring of electrical conductance and light transmittance during red blood cell aggregation.
    Baskurt OK, Uyuklu M, Meiselman HJ.
    Biorheology; 2009; 46(3):239-49. PubMed ID: 19581730
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N, Riha P, Ivanov I.
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [Abstract] [Full Text] [Related]

  • 12. Fast response characteristics of red blood cell aggregation.
    Kaliviotis E, Yianneskis M.
    Biorheology; 2008; 45(6):639-49. PubMed ID: 19065011
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG, Streekstra GJ, Strackee J, Rutten MC, Stijnen JM, Grimbergen CA.
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [Abstract] [Full Text] [Related]

  • 17. Dielectric dispersion of water in the frequency range from 10 mHz to 30 MHz.
    Batalioto F, Duarte AR, Barbero G, Neto AM.
    J Phys Chem B; 2010 Mar 18; 114(10):3467-71. PubMed ID: 20178324
    [Abstract] [Full Text] [Related]

  • 18. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC.
    Phys Med Biol; 2010 Oct 07; 55(19):5801-15. PubMed ID: 20844333
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.