These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 10821341

  • 1. Short-term angiotensin converting enzyme inhibition reduces basal tone and dilator reactivity in skeletal muscle arterioles.
    Frisbee JC, Lombard JH.
    Am J Hypertens; 2000 Apr; 13(4 Pt 1):389-95. PubMed ID: 10821341
    [Abstract] [Full Text] [Related]

  • 2. Chronic captopril administration decreases vasodilator responses in skeletal muscle arterioles.
    Frisbee JC, Weber DS, Lombard JH.
    Am J Hypertens; 1999 Jul; 12(7):705-15. PubMed ID: 10411368
    [Abstract] [Full Text] [Related]

  • 3. Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle.
    Frisbee JC, Lombard JH.
    Microvasc Res; 1999 May; 57(3):273-83. PubMed ID: 10329253
    [Abstract] [Full Text] [Related]

  • 4. Contribution of extrinsic factors and intrinsic vascular alterations to reduced arteriolar reactivity with high-salt diet and hypertension.
    Frisbee JC, Sylvester FA, Lombard JH.
    Microcirculation; 2000 Aug; 7(4):281-9. PubMed ID: 10963633
    [Abstract] [Full Text] [Related]

  • 5. Chronic elevations in salt intake and reduced renal mass hypertension compromise mechanisms of arteriolar dilation.
    Frisbee JC, Lombard JH.
    Microvasc Res; 1998 Nov; 56(3):218-27. PubMed ID: 9828160
    [Abstract] [Full Text] [Related]

  • 6. Contribution of cytochrome P-450 omega-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension.
    Frisbee JC, Falck JR, Lombard JH.
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1517-26. PubMed ID: 10775129
    [Abstract] [Full Text] [Related]

  • 7. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension.
    Frisbee JC, Lombard JH.
    Microcirculation; 1999 Sep; 6(3):215-25. PubMed ID: 10501095
    [Abstract] [Full Text] [Related]

  • 8. Integration of skeletal muscle resistance arteriolar reactivity for perfusion responses in the metabolic syndrome.
    Frisbee JC, Hollander JM, Brock RW, Yu HG, Boegehold MA.
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1771-82. PubMed ID: 19386988
    [Abstract] [Full Text] [Related]

  • 9. Acetylcholine-induced and nitric oxide-mediated vasodilation in burns.
    Meng F, Korompai FL, Lynch DM, Yuan YS.
    J Surg Res; 1998 Dec; 80(2):236-42. PubMed ID: 9878319
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Role for nitric oxide but not prostaglandins in acetylcholine-induced relaxation of rat cremaster third-order arterioles in 5-hour ischemia-reperfusion control rats.
    Borsch DM, Cilento EV, Reilly FD.
    Chin J Physiol; 1999 Mar 31; 42(1):9-16. PubMed ID: 10405766
    [Abstract] [Full Text] [Related]

  • 12. Interleukin-1 and interleukin-6 mediated skeletal muscle arteriolar vasodilation: in vitro versus in vivo studies.
    Minghini A, Britt LD, Hill MA.
    Shock; 1998 Mar 31; 9(3):210-5. PubMed ID: 9525329
    [Abstract] [Full Text] [Related]

  • 13. Effects of Hoe-140 and ramiprilat on arteriolar tone and dilation to bradykinin in skeletal muscle of rats.
    Koller A, Rodenburg JM, Kaley G.
    Am J Physiol; 1995 Apr 31; 268(4 Pt 2):H1628-33. PubMed ID: 7733364
    [Abstract] [Full Text] [Related]

  • 14. Microvascular responses in the skeletal muscle of the diabetic rat.
    Alsip NL, Schuschke DA, Miller FN.
    J Lab Clin Med; 1996 Oct 31; 128(4):429-37. PubMed ID: 8833893
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The effects of two levels of vasomotor tone at physiologic suffusate PO2 on acetylcholine- and sodium nitroprusside-induced relaxation of cremaster third-order arterioles in 5-hour ischemia-reperfusion control rats.
    Borsch DM, Cilento EV, Reilly FD.
    Int J Microcirc Clin Exp; 1997 Oct 31; 17(3):113-22. PubMed ID: 9272461
    [Abstract] [Full Text] [Related]

  • 17. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles.
    Priestley JR, Buelow MW, McEwen ST, Weinberg BD, Delaney M, Balus SF, Hoeppner C, Dondlinger L, Lombard JH.
    Microvasc Res; 2013 Sep 31; 89():134-45. PubMed ID: 23628292
    [Abstract] [Full Text] [Related]

  • 18. Calcium-activated potassium channel-mediated arteriolar relaxation during endotoxic shock.
    Price JM, Baker CH, Bond RF.
    Shock; 1997 Apr 31; 7(4):294-9. PubMed ID: 9110416
    [Abstract] [Full Text] [Related]

  • 19. Lack of flow-mediated dilation and enhanced angiotensin II-induced constriction in skeletal muscle arterioles of lupus-prone autoimmune mice.
    Bagi Z, Hamar P, Kardos M, Koller A.
    Lupus; 2006 Apr 31; 15(6):326-34. PubMed ID: 16830878
    [Abstract] [Full Text] [Related]

  • 20. ACE inhibition restores the vasodilator potency of the endothelium-derived relaxing factor, L-S-nitrosocysteine, in conscious Spontaneously Hypertensive rats.
    Lewis SJ, Hashmi-Hill MP, Owen JR, Sandock K, Robertson TP, Bates JN.
    Vascul Pharmacol; 2006 Jun 31; 44(6):491-507. PubMed ID: 16713366
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.