These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 1082198

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Effects of Ca2+ on the decay of rhodopsin photoproducts and photoreceptor adaptation in the isolated bullfrog retina.
    Hanawa I, Ando H, Matsuura T.
    Jpn J Physiol; 1985; 35(3):495-502. PubMed ID: 3877200
    [Abstract] [Full Text] [Related]

  • 23. Visual response in barnacle photoreceptors is not initiated by transitions to and from metarhodopsin.
    Atzmon Z, Hillman P, Hochstein S.
    Nature; 1978 Jul 06; 274(5666):74-6. PubMed ID: 661999
    [No Abstract] [Full Text] [Related]

  • 24. Long-lived photoproducts of rhodopsin in the retina of the frog.
    Gyllenberg G, Reuter T, Sippel H.
    Vision Res; 1974 Dec 06; 14(12):1349-57. PubMed ID: 4548594
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. The frequency of isomerization-like 'dark' events in rhodopsin and porphyropsin rods of the bull-frog retina.
    Donner K, Firsov ML, Govardovskii VI.
    J Physiol; 1990 Sep 06; 428():673-92. PubMed ID: 2231428
    [Abstract] [Full Text] [Related]

  • 28. The isolated receptor potential of the frog isolated retina: action spectra before and after extensive bleaching.
    Hood DC, Mansfield AF.
    Vision Res; 1972 Dec 06; 12(12):2109-19. PubMed ID: 4539071
    [No Abstract] [Full Text] [Related]

  • 29. Activation of cGMP phosphodiesterase by purified green rod pigment from frog retina.
    Shinozawa T, Makino-Tasaka M, Suzuki T.
    FEBS Lett; 1984 Sep 17; 175(1):87-9. PubMed ID: 6090211
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Role of visual pigment photoproducts in transduction in invertebrate photoreceptors.
    Hillman P.
    Isr J Med Sci; 1982 Jan 17; 18(1):141-3. PubMed ID: 7068337
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. The possible role of rhodopsin and the microvillus in light adaptation of the photoreceptors of an insect.
    Razmjoo S, Hamdorf K.
    Symp Soc Exp Biol; 1983 Jan 17; 36():109-31. PubMed ID: 6399778
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Response univariance in bull-frog rods with two visual pigments.
    Firsov ML, Govardovskii VI, Donner K.
    Vision Res; 1994 Apr 17; 34(7):839-47. PubMed ID: 8160397
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. The thermal limit to seeing.
    Barlow HB.
    Nature; 1988 Jul 28; 334(6180):296-7. PubMed ID: 3134618
    [No Abstract] [Full Text] [Related]

  • 40. Segregation of vitamin A1 and vitamin A2 cone pigments in the bullfrog retina.
    Semple-Rowland SL, Goldstein EB.
    Vision Res; 1981 Jul 28; 21(6):825-8. PubMed ID: 6976037
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.