These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
368 related items for PubMed ID: 1082506
1. A non-linear voltage dependent charge movement in frog skeletal muscle. Chandler WK, Rakowski RF, Schneider MF. J Physiol; 1976 Jan; 254(2):245-83. PubMed ID: 1082506 [Abstract] [Full Text] [Related]
2. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. Chandler WK, Rakowski RF, Schneider MF. J Physiol; 1976 Jan; 254(2):285-316. PubMed ID: 1082507 [Abstract] [Full Text] [Related]
3. Observations on intramembrane charge movements in skeletal muscle. Almers W. Philos Trans R Soc Lond B Biol Sci; 1975 Jun 10; 270(908):507-13. PubMed ID: 238246 [Abstract] [Full Text] [Related]
4. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres. Rakowski RF, Best PM, James-Kracke MR. J Muscle Res Cell Motil; 1985 Aug 10; 6(4):403-33. PubMed ID: 3877737 [Abstract] [Full Text] [Related]
5. Charge movement in the membrane of striated muscle. Adrian RH, Almers W. J Physiol; 1976 Jan 10; 254(2):339-60. PubMed ID: 1082509 [Abstract] [Full Text] [Related]
6. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Standen NB, Stanfield PR. J Physiol; 1980 Jul 10; 304():415-35. PubMed ID: 7441543 [Abstract] [Full Text] [Related]
7. Inward calcium current in twitch muscle fibres of the frog. Sanchez JA, Stefani E. J Physiol; 1978 Oct 10; 283():197-209. PubMed ID: 309941 [Abstract] [Full Text] [Related]
8. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle. Standen NB, Stanfield PR. J Physiol; 1979 Sep 10; 294():497-520. PubMed ID: 512954 [Abstract] [Full Text] [Related]
9. The voltage dependence of the chloride conductance of frog muscle. Hutter OF, Warner AE. J Physiol; 1972 Dec 10; 227(1):275-90. PubMed ID: 4539587 [Abstract] [Full Text] [Related]
10. Voltage-clamp experiments on frog single skeletal muscle fibres: evidence for a tubular sodium current. Mandrino M. J Physiol; 1977 Aug 10; 269(3):605-25. PubMed ID: 302334 [Abstract] [Full Text] [Related]
16. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. Horowicz P, Schneider MF. J Physiol; 1981 May 10; 314():565-93. PubMed ID: 6975814 [Abstract] [Full Text] [Related]
17. The action of external tetraethylammonium ions on unitary delayed rectifier potassium channels of frog skeletal muscle. Spruce AE, Standen NB, Stanfield PR. J Physiol; 1987 Dec 10; 393():467-78. PubMed ID: 2451742 [Abstract] [Full Text] [Related]
18. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Fink R, Lüttgau HC. J Physiol; 1976 Dec 10; 263(2):215-38. PubMed ID: 1087932 [Abstract] [Full Text] [Related]
19. A dual effect of formaldehyde on the inwardly rectifying potassium conductance in skeletal muscle. Hutter OF, Williams TL. J Physiol; 1979 Jan 10; 286():591-606. PubMed ID: 312320 [Abstract] [Full Text] [Related]
20. Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. Huang CL. J Gen Physiol; 1990 Sep 10; 96(3):535-57. PubMed ID: 2230711 [Abstract] [Full Text] [Related] Page: [Next] [New Search]