These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
530 related items for PubMed ID: 10825359
1. Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Jenkins IH, Jahanshahi M, Jueptner M, Passingham RE, Brooks DJ. Brain; 2000 Jun; 123 ( Pt 6)():1216-28. PubMed ID: 10825359 [Abstract] [Full Text] [Related]
2. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Brain; 1995 Aug; 118 ( Pt 4)():913-33. PubMed ID: 7655888 [Abstract] [Full Text] [Related]
3. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. Deiber MP, Honda M, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1999 Jun; 81(6):3065-77. PubMed ID: 10368421 [Abstract] [Full Text] [Related]
4. The pre-supplementary and primary motor areas generate rhythm for voluntary eye opening and closing movements. Suzuki Y, Kiyosawa M, Mochizuki M, Ishiwata K, Ishii K. Tohoku J Exp Med; 2010 Oct; 222(2):97-104. PubMed ID: 20877165 [Abstract] [Full Text] [Related]
5. The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. Cunnington R, Windischberger C, Deecke L, Moser E. Neuroimage; 2002 Feb; 15(2):373-85. PubMed ID: 11798272 [Abstract] [Full Text] [Related]
6. Right lateralized motor cortex activation during volitional blinking. van Eimeren T, Boecker H, Konkiewitz EC, Schwaiger M, Conrad B, Ceballos-Baumann AO. Ann Neurol; 2001 Jun; 49(6):813-6. PubMed ID: 11409438 [Abstract] [Full Text] [Related]
8. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study. Kawashima R, Itoh H, Ono S, Satoh K, Furumoto S, Gotoh R, Koyama M, Yoshioka S, Takahashi T, Takahashi K, Yanagisawa T, Fukuda H. Brain Res; 1996 Apr 15; 716(1-2):141-8. PubMed ID: 8738230 [Abstract] [Full Text] [Related]
9. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M. Brain; 1998 Aug 15; 121 ( Pt 8)():1513-31. PubMed ID: 9712013 [Abstract] [Full Text] [Related]
10. Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline J, Dettmers C, Conrad B, Brooks DJ. J Neurophysiol; 1998 Feb 15; 79(2):1070-80. PubMed ID: 9463462 [Abstract] [Full Text] [Related]
11. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I, Sochůrková D, Bocková M. Prog Brain Res; 2006 Feb 15; 159():311-30. PubMed ID: 17071240 [Abstract] [Full Text] [Related]
12. Regional cerebral blood flow during voluntary arm and hand movements in human subjects. Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RS. J Neurophysiol; 1991 Jun 15; 65(6):1392-401. PubMed ID: 1875248 [Abstract] [Full Text] [Related]
13. Cortical representation of self-paced finger movement. Larsson J, Gulyás B, Roland PE. Neuroreport; 1996 Jan 31; 7(2):463-8. PubMed ID: 8730806 [Abstract] [Full Text] [Related]
14. Movement- and task-related activations of motor cortical areas: a positron emission tomographic study. Remy P, Zilbovicius M, Leroy-Willig A, Syrota A, Samson Y. Ann Neurol; 1994 Jul 31; 36(1):19-26. PubMed ID: 8024256 [Abstract] [Full Text] [Related]
15. The role of the supplementary motor area in externally timed movement: the influence of predictability of movement timing. Thickbroom GW, Byrnes ML, Sacco P, Ghosh S, Morris IT, Mastaglia FL. Brain Res; 2000 Aug 25; 874(2):233-41. PubMed ID: 10960609 [Abstract] [Full Text] [Related]
16. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Deiber MP, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1996 Jan 25; 75(1):233-47. PubMed ID: 8822554 [Abstract] [Full Text] [Related]
17. Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements an H2(15)O PET study. Samuel M, Ceballos-Baumann AO, Turjanski N, Boecker H, Gorospe A, Linazasoro G, Holmes AP, DeLong MR, Vitek JL, Thomas DG, Quinn NP, Obeso JA, Brooks DJ. Brain; 1997 Aug 25; 120 ( Pt 8)():1301-13. PubMed ID: 9278624 [Abstract] [Full Text] [Related]
18. Sequential activation of supplementary motor area and primary motor cortex during self-paced finger movement in human evaluated by functional MRI. Wildgruber D, Erb M, Klose U, Grodd W. Neurosci Lett; 1997 May 23; 227(3):161-4. PubMed ID: 9185675 [Abstract] [Full Text] [Related]
19. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Wessel K, Zeffiro T, Lou JS, Toro C, Hallett M. Brain; 1995 Apr 23; 118 ( Pt 2)():379-93. PubMed ID: 7735880 [Abstract] [Full Text] [Related]
20. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. Winstein CJ, Grafton ST, Pohl PS. J Neurophysiol; 1997 Mar 23; 77(3):1581-94. PubMed ID: 9084621 [Abstract] [Full Text] [Related] Page: [Next] [New Search]