These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
149 related items for PubMed ID: 10840677
1. Accumulation of casein-derived peptides during growth of proteinase-positive strains of Lactococcus lactis in milk: their contribution to subsequent bacterial growth is impaired by their internal transport. Foucaud C, Juillard V. J Dairy Res; 2000 May; 67(2):233-40. PubMed ID: 10840677 [Abstract] [Full Text] [Related]
2. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Juillard V, Le Bars D, Kunji ER, Konings WN, Gripon JC, Richard J. Appl Environ Microbiol; 1995 Aug; 61(8):3024-30. PubMed ID: 7487034 [Abstract] [Full Text] [Related]
3. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. Smid EJ, Plapp R, Konings WN. J Bacteriol; 1989 Nov; 171(11):6135-40. PubMed ID: 2509429 [Abstract] [Full Text] [Related]
4. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. Kunji ER, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B, Konings WN. J Biol Chem; 1995 Jan 27; 270(4):1569-74. PubMed ID: 7829486 [Abstract] [Full Text] [Related]
5. The contribution of caseins to the amino acid supply for Lactococcus lactis depends on the type of cell envelope proteinase. Flambard B, Helinck S, Richard J, Juillard V. Appl Environ Microbiol; 1998 Jun 27; 64(6):1991-6. PubMed ID: 9603805 [Abstract] [Full Text] [Related]
6. Charged casein-derived oligopeptides competitively inhibit the transport of a reporter oligopeptide by Lactococcus lactis. Helinck S, Charbonnel P, Foucaud-Scheunemann C, Piard JC, Juillard V. J Appl Microbiol; 2003 Jun 27; 94(5):900-7. PubMed ID: 12694456 [Abstract] [Full Text] [Related]
7. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. Mierau I, Kunji ER, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, Kok J. J Bacteriol; 1996 May 27; 178(10):2794-803. PubMed ID: 8631666 [Abstract] [Full Text] [Related]
8. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides. Juillard V, Laan H, Kunji ER, Jeronimus-Stratingh CM, Bruins AP, Konings WN. J Bacteriol; 1995 Jun 27; 177(12):3472-8. PubMed ID: 7768856 [Abstract] [Full Text] [Related]
9. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling. Børsting MW, Qvist KB, Brockmann E, Vindeløv J, Pedersen TL, Vogensen FK, Ardö Y. J Dairy Sci; 2015 Jan 27; 98(1):68-77. PubMed ID: 25465631 [Abstract] [Full Text] [Related]
10. The effects of adding lactococcal proteinase on the growth rate of Lactococcus lactis in milk depend on the type of enzyme. Helinck S, Richard J, Juillard V. Appl Environ Microbiol; 1997 Jun 27; 63(6):2124-30. PubMed ID: 9172328 [Abstract] [Full Text] [Related]
11. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. Smid EJ, Konings WN. J Bacteriol; 1990 Sep 27; 172(9):5286-92. PubMed ID: 2118509 [Abstract] [Full Text] [Related]
12. Hydrolysis of caseins and formation of hydrophilic and hydrophobic peptides by wild Lactococcus lactis strains isolated from raw ewes' milk cheese. Morales P, Fernández-García E, Gaya P, Medina M, Nuñez M. J Appl Microbiol; 2001 Nov 27; 91(5):907-15. PubMed ID: 11722669 [Abstract] [Full Text] [Related]
13. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Detmers FJ, Kunji ER, Lanfermeijer FC, Poolman B, Konings WN. Biochemistry; 1998 Nov 24; 37(47):16671-9. PubMed ID: 9843435 [Abstract] [Full Text] [Related]
14. Specificity of milk peptide utilization by Lactococcus lactis. Juillard V, Guillot A, Le Bars D, Gripon JC. Appl Environ Microbiol; 1998 Apr 24; 64(4):1230-6. PubMed ID: 9546157 [Abstract] [Full Text] [Related]
15. Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Bruinenberg PG, Vos P, De Vos WM. Appl Environ Microbiol; 1992 Jan 24; 58(1):78-84. PubMed ID: 1539995 [Abstract] [Full Text] [Related]
16. Reconstruction of the proteolytic pathway for use of beta-casein by Lactococcus lactis. Kunji ER, Fang G, Jeronimus-Stratingh CM, Bruins AP, Poolman B, Konings WN. Mol Microbiol; 1998 Mar 24; 27(6):1107-18. PubMed ID: 9570397 [Abstract] [Full Text] [Related]
17. Casein and peptide degradation in lactic acid bacteria. Mierau I, Kunji ER, Venema G, Kok J. Biotechnol Genet Eng Rev; 1997 Mar 24; 14():279-301. PubMed ID: 9188156 [No Abstract] [Full Text] [Related]
18. Proteinase activity in slow lactic acid-producing variants of Streptococcus lactis. Pearce LE, Skipper NA, Jarvis BD. Appl Microbiol; 1974 May 24; 27(5):933-7. PubMed ID: 4208513 [Abstract] [Full Text] [Related]
19. Interaction between proteolytic strains of Lactococcus lactis influenced by different types of proteinase during growth in milk. Flambard B, Richard J, Juillard V. Appl Environ Microbiol; 1997 Jun 24; 63(6):2131-5. PubMed ID: 9172329 [Abstract] [Full Text] [Related]
20. Specificity of hydrolysis of bovine kappa-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Reid JR, Coolbear T, Pillidge CJ, Pritchard GG. Appl Environ Microbiol; 1994 Mar 24; 60(3):801-6. PubMed ID: 8161175 [Abstract] [Full Text] [Related] Page: [Next] [New Search]