These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 10841756

  • 1. Role of the glutamate 332 residue in the transglycosylation activity of ThermusMaltogenic amylase.
    Kim TJ, Park CS, Cho HY, Cha SS, Kim JS, Lee SB, Moon TW, Kim JW, Oh BH, Park KH.
    Biochemistry; 2000 Jun 13; 39(23):6773-80. PubMed ID: 10841756
    [Abstract] [Full Text] [Related]

  • 2. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y, Duan X, Wang L, Wu J.
    J Biotechnol; 2016 Jan 10; 217():53-61. PubMed ID: 26597712
    [Abstract] [Full Text] [Related]

  • 3. Modulation of hydrolysis and transglycosylation activity of Thermus maltogenic amylase by combinatorial saturation mutagenesis.
    Oh SW, Jang MU, Jeong CK, Kang HJ, Park JM, Kim TJ.
    J Microbiol Biotechnol; 2008 Aug 10; 18(8):1401-7. PubMed ID: 18756100
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA.
    Park SH, Cha H, Kang HK, Shim JH, Woo EJ, Kim JW, Park KH.
    Biochim Biophys Acta; 2005 Aug 10; 1751(2):170-7. PubMed ID: 15975859
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors.
    Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF.
    Carbohydr Res; 1998 Dec 15; 313(3-4):235-46. PubMed ID: 10209866
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose.
    Cheong KA, Kim TJ, Yoon JW, Park CS, Lee TS, Kim YB, Park KH, Kim JW.
    Biotechnol Appl Biochem; 2002 Feb 15; 35(1):27-34. PubMed ID: 11834127
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu.
    Tran PL, Cha HJ, Lee JS, Park SH, Woo EJ, Park KH.
    Biochem Biophys Res Commun; 2014 Sep 05; 451(4):541-7. PubMed ID: 25117441
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain.
    Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH.
    Appl Environ Microbiol; 1999 Apr 05; 65(4):1644-51. PubMed ID: 10103262
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.