These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 10842305
1. Remodeling muscles with calcineurin. Olson EN, Williams RS. Bioessays; 2000 Jun; 22(6):510-9. PubMed ID: 10842305 [Abstract] [Full Text] [Related]
2. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Wilkins BJ, Molkentin JD. Biochem Biophys Res Commun; 2004 Oct 01; 322(4):1178-91. PubMed ID: 15336966 [Abstract] [Full Text] [Related]
3. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Musarò A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. Nature; 1999 Aug 05; 400(6744):581-5. PubMed ID: 10448862 [Abstract] [Full Text] [Related]
4. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth. Sanna B, Bueno OF, Dai YS, Wilkins BJ, Molkentin JD. Mol Cell Biol; 2005 Feb 05; 25(3):865-78. PubMed ID: 15657416 [Abstract] [Full Text] [Related]
5. Effect of moderate acute exercise on expression of mRNA involved in the calcineurin signaling pathway in human skeletal muscle. Hitomi Y, Kizaki T, Katsumura T, Mizuno M, Itoh CE, Esaki K, Fujioka Y, Takemasa T, Haga S, Ohno H. IUBMB Life; 2003 Jul 05; 55(7):409-13. PubMed ID: 14584592 [Abstract] [Full Text] [Related]
6. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. J Clin Invest; 2000 May 05; 105(10):1395-406. PubMed ID: 10811847 [Abstract] [Full Text] [Related]
7. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, Williams RS. EMBO J; 2000 May 02; 19(9):1963-73. PubMed ID: 10790363 [Abstract] [Full Text] [Related]
8. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Molkentin JD. Cardiovasc Res; 2004 Aug 15; 63(3):467-75. PubMed ID: 15276472 [Abstract] [Full Text] [Related]
9. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Sakuma K, Nishikawa J, Nakao R, Watanabe K, Totsuka T, Nakano H, Sano M, Yasuhara M. Acta Neuropathol; 2003 Mar 15; 105(3):271-80. PubMed ID: 12557015 [Abstract] [Full Text] [Related]
10. NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Pu WT, Ma Q, Izumo S. Circ Res; 2003 Apr 18; 92(7):725-31. PubMed ID: 12663489 [Abstract] [Full Text] [Related]
11. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. Fiedler B, Wollert KC. Cardiovasc Res; 2004 Aug 15; 63(3):450-7. PubMed ID: 15276470 [Abstract] [Full Text] [Related]
12. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S. Circ Res; 2008 Oct 10; 103(8):891-9. PubMed ID: 18776042 [Abstract] [Full Text] [Related]
13. Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers. Mu X, Brown LD, Liu Y, Schneider MF. Physiol Genomics; 2007 Aug 20; 30(3):300-12. PubMed ID: 17473216 [Abstract] [Full Text] [Related]
14. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development. Al-Shanti N, Stewart CE. Biol Rev Camb Philos Soc; 2009 Nov 20; 84(4):637-52. PubMed ID: 19725819 [Abstract] [Full Text] [Related]
15. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Chin ER. Proc Nutr Soc; 2004 May 20; 63(2):279-86. PubMed ID: 15294044 [Abstract] [Full Text] [Related]
16. Calcineurin and skeletal muscle growth. Michel RN, Dunn SE, Chin ER. Proc Nutr Soc; 2004 May 20; 63(2):341-9. PubMed ID: 15294053 [Abstract] [Full Text] [Related]
17. The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC. Circ Res; 2009 Feb 27; 104(4):522-30. PubMed ID: 19122177 [Abstract] [Full Text] [Related]
18. Calcineurin activation is not necessary for Doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. Merten KE, Jiang Y, Feng W, Kang YJ. J Pharmacol Exp Ther; 2006 Nov 27; 319(2):934-40. PubMed ID: 16926266 [Abstract] [Full Text] [Related]
19. Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ. J Cell Physiol; 2007 Apr 27; 211(1):138-48. PubMed ID: 17111365 [Abstract] [Full Text] [Related]
20. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition. Jordan T, Jiang H, Li H, DiMario JX. J Cell Sci; 2004 Dec 01; 117(Pt 25):6175-83. PubMed ID: 15564379 [Abstract] [Full Text] [Related] Page: [Next] [New Search]