These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 10846172
1. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH. Sagami I, Sato Y, Daff S, Shimizu T. J Biol Chem; 2000 Aug 25; 275(34):26150-7. PubMed ID: 10846172 [Abstract] [Full Text] [Related]
2. Mutational analysis of the tetrahydrobiopterin-binding site in inducible nitric-oxide synthase. Ghosh S, Wolan D, Adak S, Crane BR, Kwon NS, Tainer JA, Getzoff ED, Stuehr DJ. J Biol Chem; 1999 Aug 20; 274(34):24100-12. PubMed ID: 10446182 [Abstract] [Full Text] [Related]
3. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ, Wei CC, Santolini J, Panda K, Wang Q, Stuehr DJ. Biochemistry; 2005 Mar 29; 44(12):4676-90. PubMed ID: 15779894 [Abstract] [Full Text] [Related]
8. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Rusche KM, Spiering MM, Marletta MA. Biochemistry; 1998 Nov 03; 37(44):15503-12. PubMed ID: 9799513 [Abstract] [Full Text] [Related]
9. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. Wei CC, Wang ZQ, Hemann C, Hille R, Stuehr DJ. J Biol Chem; 2003 Nov 21; 278(47):46668-73. PubMed ID: 14504282 [Abstract] [Full Text] [Related]
10. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Stuehr DJ, Wei CC, Wang Z, Hille R. Dalton Trans; 2005 Nov 07; (21):3427-35. PubMed ID: 16234921 [Abstract] [Full Text] [Related]
11. Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation. Ost TW, Daff S. J Biol Chem; 2005 Jan 14; 280(2):965-73. PubMed ID: 15507439 [Abstract] [Full Text] [Related]
12. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T, Sagami I, Daff S, Shimizu T. Biochem Biophys Res Commun; 2001 Apr 20; 282(5):1092-7. PubMed ID: 11302726 [Abstract] [Full Text] [Related]
13. Endothelial nitric oxide synthase: modulations of the distal heme site produced by progressive N-terminal deletions. Rodríguez-Crespo I, Moënne-Loccoz P, Loehr TM, Ortiz de Montellano PR. Biochemistry; 1997 Jul 15; 36(28):8530-8. PubMed ID: 9214298 [Abstract] [Full Text] [Related]
14. Effects of Asp-369 and Arg-372 mutations on heme environment and function in human endothelial nitric-oxide synthase. Chen PF, Berka V, Tsai AL, Wu KK. J Biol Chem; 1998 Dec 18; 273(51):34164-70. PubMed ID: 9852077 [Abstract] [Full Text] [Related]
15. Delineation of the arginine- and tetrahydrobiopterin-binding sites of neuronal nitric oxide synthase. Boyhan A, Smith D, Charles IG, Saqi M, Lowe PN. Biochem J; 1997 Apr 01; 323 ( Pt 1)(Pt 1):131-9. PubMed ID: 9173872 [Abstract] [Full Text] [Related]
19. A nitric oxide synthase-like protein from Synechococcus produces NO/NO3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca2+-dependent manner. Picciano AL, Crane BR. J Biol Chem; 2019 Jul 05; 294(27):10708-10719. PubMed ID: 31113865 [Abstract] [Full Text] [Related]