These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 10853930

  • 21. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E.
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [Abstract] [Full Text] [Related]

  • 22. Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits.
    Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B.
    Retina; 1999 Dec; 19(6):546-52. PubMed ID: 10606457
    [Abstract] [Full Text] [Related]

  • 23. Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes.
    Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y.
    Jpn J Ophthalmol; 2004 Dec; 48(6):552-7. PubMed ID: 15592779
    [Abstract] [Full Text] [Related]

  • 24. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG, Schanze T, Brunner U, Sailer H, Wiesenack C.
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [Abstract] [Full Text] [Related]

  • 25. Suprachoroidal electrical stimulation: effects of stimulus pulse parameters on visual cortical responses.
    John SE, Shivdasani MN, Williams CE, Morley JW, Shepherd RK, Rathbone GD, Fallon JB.
    J Neural Eng; 2013 Oct; 10(5):056011. PubMed ID: 23928717
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW, Seo JM, Ha S, Kim ET, Chung H, Kim SJ.
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T, Sachs HG, Wiesenack C, Brunner U, Sailer H.
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG, Gekeler F, Schwahn H, Jakob W, Köhler M, Schulmeyer F, Marienhagen J, Brunner U, Framme C.
    Eur J Ophthalmol; 2005 Feb; 15(4):493-9. PubMed ID: 16001384
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
    Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D.
    Invest Ophthalmol Vis Sci; 2003 Dec; 44(12):5355-61. PubMed ID: 14638738
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
    Eickenscheidt M, Jenkner M, Thewes R, Fromherz P, Zeck G.
    J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.