These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 10861370

  • 1. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: second-order maximum correlation approximation.
    La Penna G, Fausti S, Perico A, Ferretti JA.
    Biopolymers; 2000 Aug; 54(2):89-103. PubMed ID: 10861370
    [Abstract] [Full Text] [Related]

  • 2. Smoluchowski dynamics of the vnd/NK-2 homeodomain from Drosophila melanogaster: first-order mode-coupling approximation.
    La Penna G, Mormino M, Pioli F, Perico A, Fioravanti R, Gruschus JM, Ferretti JA.
    Biopolymers; 1999 Mar; 49(3):235-54. PubMed ID: 9990841
    [Abstract] [Full Text] [Related]

  • 3. Interactions of the vnd/NK-2 homeodomain with DNA by nuclear magnetic resonance spectroscopy: basis of binding specificity.
    Gruschus JM, Tsao DH, Wang LH, Nirenberg M, Ferretti JA.
    Biochemistry; 1997 May 06; 36(18):5372-80. PubMed ID: 9154919
    [Abstract] [Full Text] [Related]

  • 4. Mode-coupling smoluchowski dynamics of a double-stranded DNA oligomer.
    Fausti S, La Penna G, Cuniberti C, Perico A.
    Biopolymers; 1999 Nov 06; 50(6):613-29. PubMed ID: 10508964
    [Abstract] [Full Text] [Related]

  • 5. The three-dimensional solution structure of the NK-2 homeodomain from Drosophila.
    Tsao DH, Gruschus JM, Wang LH, Nirenberg M, Ferretti JA.
    J Mol Biol; 1995 Aug 11; 251(2):297-307. PubMed ID: 7643404
    [Abstract] [Full Text] [Related]

  • 6. The three-dimensional structure of the vnd/NK-2 homeodomain-DNA complex by NMR spectroscopy.
    Gruschus JM, Tsao DH, Wang LH, Nirenberg M, Ferretti JA.
    J Mol Biol; 1999 Jun 11; 289(3):529-45. PubMed ID: 10356327
    [Abstract] [Full Text] [Related]

  • 7. Distortion of the three-dimensional structure of the vnd/NK-2 homeodomain bound to DNA induced by an embryonically lethal A35T point mutation.
    Hwang KJ, Xiang B, Gruschus JM, Nam KY, No KT, Nirenberg M, Ferretti JA.
    Biochemistry; 2003 Nov 04; 42(43):12522-31. PubMed ID: 14580198
    [Abstract] [Full Text] [Related]

  • 8. Dynamics of a double stranded DNA oligomer: mode-coupling diffusion approach and reduced rigid fragment models.
    La Penna G, Perico A, Genest D.
    J Biomol Struct Dyn; 2000 Feb 04; 17(4):673-85. PubMed ID: 10698105
    [Abstract] [Full Text] [Related]

  • 9. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations.
    Blake-Hall J, Walker O, Fushman D.
    Methods Mol Biol; 2004 Feb 04; 278():139-60. PubMed ID: 15317996
    [Abstract] [Full Text] [Related]

  • 10. Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements.
    Orekhov VY, Korzhnev DM, Pervushin KV, Hoffmann E, Arseniev AS.
    J Biomol Struct Dyn; 1999 Aug 04; 17(1):157-74. PubMed ID: 10496429
    [Abstract] [Full Text] [Related]

  • 11. Peptide internal motions on nanosecond time scale derived from direct fitting of (13)C and (15)N NMR spectral density functions.
    Mayo KH, Daragan VA, Idiyatullin D, Nesmelova I.
    J Magn Reson; 2000 Sep 04; 146(1):188-95. PubMed ID: 10968972
    [Abstract] [Full Text] [Related]

  • 12. Predicting NMR relaxation rates in anisotropically tumbling proteins through networks of coupled rotators.
    Nodet G, Abergel D, Bodenhausen G.
    Chemphyschem; 2008 Mar 14; 9(4):625-33. PubMed ID: 18324719
    [Abstract] [Full Text] [Related]

  • 13. Vibrational spectral diffusion in supercritical D2O from first principles: an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation.
    Mallik BS, Chandra A.
    J Phys Chem A; 2008 Dec 25; 112(51):13518-27. PubMed ID: 19093822
    [Abstract] [Full Text] [Related]

  • 14. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion.
    Denisov VP, Halle B.
    J Mol Biol; 1995 Feb 03; 245(5):682-97. PubMed ID: 7531248
    [Abstract] [Full Text] [Related]

  • 15. Evaluating rotational diffusion from protein MD simulations.
    Wong V, Case DA.
    J Phys Chem B; 2008 May 15; 112(19):6013-24. PubMed ID: 18052365
    [Abstract] [Full Text] [Related]

  • 16. Solution structure and backbone dynamics of the defunct domain of calcium vector protein.
    Théret I, Baladi S, Cox JA, Gallay J, Sakamoto H, Craescu CT.
    Biochemistry; 2001 Nov 20; 40(46):13888-97. PubMed ID: 11705378
    [Abstract] [Full Text] [Related]

  • 17. Extreme-values statistics and dynamics of water at protein interfaces.
    Korb JP, Goddard Y, Pajski J, Diakova G, Bryant RG.
    J Phys Chem B; 2011 Nov 10; 115(44):12845-58. PubMed ID: 21932852
    [Abstract] [Full Text] [Related]

  • 18. Hydrodynamic models and computational methods for NMR relaxation.
    García de la Torre J, Bernadó P, Pons M.
    Methods Enzymol; 2005 Nov 10; 394():419-30. PubMed ID: 15808231
    [Abstract] [Full Text] [Related]

  • 19. Domain mobility in proteins from NMR/SRLS.
    Shapiro YE, Kahana E, Meirovitch E.
    J Phys Chem B; 2009 Sep 03; 113(35):12050-60. PubMed ID: 19673471
    [Abstract] [Full Text] [Related]

  • 20. The physical basis of model-free analysis of NMR relaxation data from proteins and complex fluids.
    Halle B.
    J Chem Phys; 2009 Dec 14; 131(22):224507. PubMed ID: 20001057
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.