These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 10869188

  • 1. Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase.
    Nichols DJ, Keeling PL, Spalding M, Guan H.
    Biochemistry; 2000 Jul 04; 39(26):7820-5. PubMed ID: 10869188
    [Abstract] [Full Text] [Related]

  • 2. Involvement of lysine-193 of the conserved "K-T-G-G" motif in the catalysis of maize starch synthase IIa.
    Gao Z, Keeling P, Shibles R, Guan H.
    Arch Biochem Biophys; 2004 Jul 01; 427(1):1-7. PubMed ID: 15178482
    [Abstract] [Full Text] [Related]

  • 3. Essential arginine residues in maize starch synthase IIa are involved in both ADP-glucose and primer binding.
    Imparl-Radosevich JM, Keeling PL, Guan H.
    FEBS Lett; 1999 Sep 03; 457(3):357-62. PubMed ID: 10471808
    [Abstract] [Full Text] [Related]

  • 4. Analysis of purified maize starch synthases IIa and IIb: SS isoforms can be distinguished based on their kinetic properties.
    Imparl-Radosevich JM, Nichols DJ, Li P, McKean AL, Keeling PL, Guan H.
    Arch Biochem Biophys; 1999 Feb 01; 362(1):131-8. PubMed ID: 9917337
    [Abstract] [Full Text] [Related]

  • 5. Effect of site-directed mutagenesis of the conserved aspartate and glutamate on E. coli undecaprenyl pyrophosphate synthase catalysis.
    Pan JJ, Yang LW, Liang PH.
    Biochemistry; 2000 Nov 14; 39(45):13856-61. PubMed ID: 11076526
    [Abstract] [Full Text] [Related]

  • 6. Purification and characterization of soluble starch synthases from maize endosperm.
    Cao H, James MG, Myers AM.
    Arch Biochem Biophys; 2000 Jan 01; 373(1):135-46. PubMed ID: 10620332
    [Abstract] [Full Text] [Related]

  • 7. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK, Wu G, Massiah MA, Mildvan AS.
    Biochemistry; 2000 Feb 22; 39(7):1655-74. PubMed ID: 10677214
    [Abstract] [Full Text] [Related]

  • 8. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP, Henrissat B, Braithwaite KL, Gilbert HJ.
    Biochemistry; 1996 Dec 17; 35(50):16195-204. PubMed ID: 8973192
    [Abstract] [Full Text] [Related]

  • 9. Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis.
    Nes WD, Jayasimha P, Zhou W, Kanagasabai R, Jin C, Jaradat TT, Shaw RW, Bujnicki JM.
    Biochemistry; 2004 Jan 20; 43(2):569-76. PubMed ID: 14717613
    [Abstract] [Full Text] [Related]

  • 10. Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1.
    Tao Z, Grewer C.
    J Gen Physiol; 2007 Apr 20; 129(4):331-44. PubMed ID: 17389249
    [Abstract] [Full Text] [Related]

  • 11. Purification and characterization of maize starch synthase I and its truncated forms.
    Imparl-Radosevich JM, Li P, Zhang L, McKean AL, Keeling PL, Guan H.
    Arch Biochem Biophys; 1998 May 01; 353(1):64-72. PubMed ID: 9578601
    [Abstract] [Full Text] [Related]

  • 12. Carboxyl residues in the active site of human phenol sulfotransferase (SULT1A1).
    Chen G, Rabjohn PA, York JL, Wooldridge C, Zhang D, Falany CN, Radominska-Pandya A.
    Biochemistry; 2000 Dec 26; 39(51):16000-7. PubMed ID: 11123927
    [Abstract] [Full Text] [Related]

  • 13. Identification of essential histidine residues in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase: analysis by chemical modification with diethyl pyrocarbonate and site-directed mutagenesis.
    Sheflyan GY, Duewel HS, Chen G, Woodard RW.
    Biochemistry; 1999 Oct 26; 38(43):14320-9. PubMed ID: 10572007
    [Abstract] [Full Text] [Related]

  • 14. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D, Harrison DH.
    Biochemistry; 1998 Jul 14; 37(28):10074-86. PubMed ID: 9665712
    [Abstract] [Full Text] [Related]

  • 15. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-d-glucosamine: the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540.
    Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, Oppenheim AB.
    J Mol Biol; 2000 Jul 14; 300(3):611-7. PubMed ID: 10884356
    [Abstract] [Full Text] [Related]

  • 16. Mutagenesis and kinetic studies of a plant cysteine proteinase with an unusual arrangement of acidic amino acids in and around the active site.
    Carter CE, Marriage H, Goodenough PW.
    Biochemistry; 2000 Sep 12; 39(36):11005-13. PubMed ID: 10998237
    [Abstract] [Full Text] [Related]

  • 17. Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules.
    Liu F, Romanova N, Lee EA, Ahmed R, Evans M, Gilbert EP, Morell MK, Emes MJ, Tetlow IJ.
    Biochem J; 2012 Dec 15; 448(3):373-87. PubMed ID: 22963372
    [Abstract] [Full Text] [Related]

  • 18. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A.
    Wohlfahrt G, Pellikka T, Boer H, Teeri TT, Koivula A.
    Biochemistry; 2003 Sep 02; 42(34):10095-103. PubMed ID: 12939137
    [Abstract] [Full Text] [Related]

  • 19. The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana.
    Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF.
    FEBS J; 2010 Jan 02; 277(2):428-40. PubMed ID: 19968859
    [Abstract] [Full Text] [Related]

  • 20. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS.
    Biochemistry; 2003 Sep 30; 42(38):11161-9. PubMed ID: 14503866
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.