These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


433 related items for PubMed ID: 10873454

  • 1. A revised mechanism for the alkaline phosphatase reaction involving three metal ions.
    Stec B, Holtz KM, Kantrowitz ER.
    J Mol Biol; 2000 Jun 23; 299(5):1303-11. PubMed ID: 10873454
    [Abstract] [Full Text] [Related]

  • 2. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase.
    Le Du MH, Lamoure C, Muller BH, Bulgakov OV, Lajeunesse E, Ménez A, Boulain JC.
    J Mol Biol; 2002 Mar 01; 316(4):941-53. PubMed ID: 11884134
    [Abstract] [Full Text] [Related]

  • 3. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase.
    Wang J, Stieglitz KA, Kantrowitz ER.
    Biochemistry; 2005 Jun 14; 44(23):8378-86. PubMed ID: 15938627
    [Abstract] [Full Text] [Related]

  • 4. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102.
    Stec B, Hehir MJ, Brennan C, Nolte M, Kantrowitz ER.
    J Mol Biol; 1998 Apr 03; 277(3):647-62. PubMed ID: 9533886
    [Abstract] [Full Text] [Related]

  • 5. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases.
    Murphy JE, Tibbitts TT, Kantrowitz ER.
    J Mol Biol; 1995 Nov 03; 253(4):604-17. PubMed ID: 7473737
    [Abstract] [Full Text] [Related]

  • 6. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites.
    Horton NC, Perona JJ.
    Biochemistry; 2004 Jun 08; 43(22):6841-57. PubMed ID: 15170321
    [Abstract] [Full Text] [Related]

  • 7. Structure and mechanism of alkaline phosphatase.
    Coleman JE.
    Annu Rev Biophys Biomol Struct; 1992 Jun 08; 21():441-83. PubMed ID: 1525473
    [Abstract] [Full Text] [Related]

  • 8. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites.
    Ma L, Kantrowitz ER.
    Biochemistry; 1996 Feb 20; 35(7):2394-402. PubMed ID: 8652582
    [Abstract] [Full Text] [Related]

  • 9. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: implications for the catalytic mechanism.
    Beernink PT, Segelke BW, Hadi MZ, Erzberger JP, Wilson DM, Rupp B.
    J Mol Biol; 2001 Apr 06; 307(4):1023-34. PubMed ID: 11286553
    [Abstract] [Full Text] [Related]

  • 10. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT, Murphy JE, Kantrowitz ER.
    J Mol Biol; 1996 Apr 05; 257(3):700-15. PubMed ID: 8648634
    [Abstract] [Full Text] [Related]

  • 11. Metal-ion induced conformational changes in alkaline phosphatase from E. coli assessed by limited proteolysis.
    Bucević-Popović V, Pavela-Vrancic M, Dieckmann R.
    Biochimie; 2004 Jun 05; 86(6):403-9. PubMed ID: 15358057
    [Abstract] [Full Text] [Related]

  • 12. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase.
    de Backer MM, McSweeney S, Lindley PF, Hough E.
    Acta Crystallogr D Biol Crystallogr; 2004 Sep 05; 60(Pt 9):1555-61. PubMed ID: 15333925
    [Abstract] [Full Text] [Related]

  • 13. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli.
    Gudjónsdóttir K, Asgeirsson B.
    FEBS J; 2008 Jan 05; 275(1):117-27. PubMed ID: 18067583
    [Abstract] [Full Text] [Related]

  • 14. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.
    Sullivan SM, Holyoak T.
    Biochemistry; 2007 Sep 04; 46(35):10078-88. PubMed ID: 17685635
    [Abstract] [Full Text] [Related]

  • 15. Crystal structures of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate.
    Zeng YF, Ko TP, Lai HL, Cheng YS, Wu TH, Ma Y, Chen CC, Yang CS, Cheng KJ, Huang CH, Guo RT, Liu JR.
    J Mol Biol; 2011 Jun 03; 409(2):214-24. PubMed ID: 21463636
    [Abstract] [Full Text] [Related]

  • 16. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
    Sam MD, Perona JJ.
    Biochemistry; 1999 May 18; 38(20):6576-86. PubMed ID: 10350476
    [Abstract] [Full Text] [Related]

  • 17. The R78K and D117E active-site variants of Saccharomyces cerevisiae soluble inorganic pyrophosphatase: structural studies and mechanistic implications.
    Tuominen V, Heikinheimo P, Kajander T, Torkkel T, Hyytiä T, Käpylä J, Lahti R, Cooperman BS, Goldman A.
    J Mol Biol; 1998 Dec 18; 284(5):1565-80. PubMed ID: 9878371
    [Abstract] [Full Text] [Related]

  • 18. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation.
    Hehir MJ, Murphy JE, Kantrowitz ER.
    J Mol Biol; 2000 Dec 08; 304(4):645-56. PubMed ID: 11099386
    [Abstract] [Full Text] [Related]

  • 19. Crystallographic identification of metal-binding sites in Escherichia coli inorganic pyrophosphatase.
    Kankare J, Salminen T, Lahti R, Cooperman BS, Baykov AA, Goldman A.
    Biochemistry; 1996 Apr 16; 35(15):4670-7. PubMed ID: 8664256
    [Abstract] [Full Text] [Related]

  • 20. The pH-dependent activation mechanism of Ser102 in Escherichia coli alkaline phosphatase: a theoretical study.
    Zhang H, Yang L, Ding W, Ma Y.
    J Biol Inorg Chem; 2018 Mar 16; 23(2):277-284. PubMed ID: 29290009
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.