These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 1088229

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Catecholamine-containing cells of the taste buds in the tongue of the frog (Rana temporaria).
    Krokhina EM, Esakov AI, Savushkina MA.
    Arch Anat Microsc Morphol Exp; 1975; 64(1):67-74. PubMed ID: 1082738
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):25-39. PubMed ID: 12454994
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Development of fungiform papillae, taste buds, and their innervation in the hamster.
    Whitehead MC, Kachele DL.
    J Comp Neurol; 1994 Feb 22; 340(4):515-30. PubMed ID: 8006215
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.
    Mbiene JP.
    J Neurocytol; 2004 Dec 22; 33(6):617-29. PubMed ID: 16217618
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Morphometric and immunocytochemical assessment of fungiform taste buds after interruption of the chorda-lingual nerve.
    Oakley B, Lawton A, Riddle DR, Wu LH.
    Microsc Res Tech; 1993 Oct 15; 26(3):187-95. PubMed ID: 8241558
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Collateral reinnervation of taste buds after chronic sensory denervation: a morphological study.
    Kinnman E, Aldskogius H.
    J Comp Neurol; 1988 Apr 22; 270(4):569-74. PubMed ID: 3372748
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Long-term effects of gustatory neurectomy on fungiform papillae in the young rat.
    Ganchrow JR, Ganchrow D.
    Anat Rec; 1989 Nov 22; 225(3):224-31. PubMed ID: 2683869
    [Abstract] [Full Text] [Related]

  • 18. Membrane excitability of wing and rod cells in frog taste discs following denervation.
    Okuda-Akabane K, Fukami H, Narita K, Kitada Y.
    Brain Res; 2006 Aug 04; 1103(1):145-9. PubMed ID: 16787642
    [Abstract] [Full Text] [Related]

  • 19. Monoamine-containing cells in the denervated frog's taste organ. A fluorescence histochemical study.
    Hirata K.
    Fukuoka Igaku Zasshi; 1984 Jan 04; 75(1):21-33. PubMed ID: 6610617
    [No Abstract] [Full Text] [Related]

  • 20. A strong nerve dependence of sonic hedgehog expression in basal cells in mouse taste bud and an autonomous transcriptional control of genes in differentiated taste cells.
    Miura H, Kato H, Kusakabe Y, Tagami M, Miura-Ohnuma J, Ninomiya Y, Hino A.
    Chem Senses; 2004 Nov 04; 29(9):823-31. PubMed ID: 15574818
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.