These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 10898095

  • 1. The influence of adrenal vein occlusion on whole-kidney hemodynamics in the spontaneously hypertensive rats.
    Alsonius K, Ambramczyk P.
    J Physiol Pharmacol; 2000 Jun; 51(2):223-7. PubMed ID: 10898095
    [Abstract] [Full Text] [Related]

  • 2. Adrenal-renal portal circulation contributes to decrease in renal blood flow after renal artery stenosis in rats.
    Ziecina R, Abramczyk P, Lisiecka A, Papierski K, Przybylski J.
    J Physiol Pharmacol; 1998 Dec; 49(4):553-60. PubMed ID: 10069696
    [Abstract] [Full Text] [Related]

  • 3. Renal haemodynamics and total body sodium in immature spontaneously hypertensive and Wistar-Kyoto rats.
    Harrap SB, Doyle AE.
    J Hypertens Suppl; 1986 Oct; 4(3):S249-52. PubMed ID: 3465900
    [Abstract] [Full Text] [Related]

  • 4. Effects of uninephrectomy on renal structural properties in spontaneously hypertensive rats.
    Kinuno H, Tomoda F, Koike T, Takata M, Inoue H.
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):173-8. PubMed ID: 15743399
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness.
    Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ.
    Exp Toxicol Pathol; 2007 Nov; 59(3-4):253-60. PubMed ID: 17764917
    [Abstract] [Full Text] [Related]

  • 10. Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants.
    Koeners MP, Racasan S, Koomans HA, Joles JA, Braam B.
    Acta Physiol (Oxf); 2007 Aug; 190(4):329-38. PubMed ID: 17394565
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Role of vascular structure in blood pressure development of the spontaneously hypertensive rat.
    Mulvany MJ.
    J Hypertens Suppl; 1986 Oct; 4(3):S61-3. PubMed ID: 3465915
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effect of clonidine on tyrosine hydroxylase activity in the adrenal medulla and brain of spontaneously hypertensive rats.
    Moura E, Afonso J, Serrão MP, Vieira-Coelho MA.
    Basic Clin Pharmacol Toxicol; 2009 Feb; 104(2):113-21. PubMed ID: 19067675
    [Abstract] [Full Text] [Related]

  • 18. High renin arterial hypertension due to occlusion of the adrenal veins in the rat.
    Abramczyk P, Przybylski J, Lisiecka A, Papierski K, Ciszek B.
    J Physiol Pharmacol; 1995 Mar; 46(1):71-6. PubMed ID: 7599340
    [Abstract] [Full Text] [Related]

  • 19. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats.
    Nagaoka A, Kakihana M, Suno M, Hamajo K.
    Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927
    [Abstract] [Full Text] [Related]

  • 20. Arterial hypertension due to occlusion of the adrenal vein in the rat is strain-dependent.
    Abramczyk P, Lisiecka A, Papierski K, Ziecina R, Przybylski J.
    J Hypertens; 1998 Sep; 16(9):1249-51. PubMed ID: 9746110
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.