These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


286 related items for PubMed ID: 10907757

  • 1. Exercise-induced arterial hypoxaemia in athletes: a review.
    Prefaut C, Durand F, Mucci P, Caillaud C.
    Sports Med; 2000 Jul; 30(1):47-61. PubMed ID: 10907757
    [Abstract] [Full Text] [Related]

  • 2. Effects of nitric oxide inhalation on pulmonary gas exchange during exercise in highly trained athletes.
    Durand F, Mucci P, Safont L, Prefaut C.
    Acta Physiol Scand; 1999 Feb; 165(2):169-76. PubMed ID: 10090328
    [Abstract] [Full Text] [Related]

  • 3. Pulmonary gas exchange in athletes with exercise-induced hypoxaemia.
    Todaro A, Leonardi LM, Besi M, Faccini P, Sardella F, Menchinelli C, Gallozzi C.
    J Sports Med Phys Fitness; 1995 Jun; 35(2):114-23. PubMed ID: 7500625
    [Abstract] [Full Text] [Related]

  • 4. Exercise-induced hypoxaemia in elite endurance athletes. Incidence, causes and impact on VO2max.
    Powers SK, Martin D, Dodd S.
    Sports Med; 1993 Jul; 16(1):14-22. PubMed ID: 8356374
    [Abstract] [Full Text] [Related]

  • 5. Exercise-induced hypoxaemia in highly trained athletes.
    Powers SK, Williams J.
    Sports Med; 1987 Jul; 4(1):46-53. PubMed ID: 3547538
    [Abstract] [Full Text] [Related]

  • 6. Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes.
    Vogiatzis I, Georgiadou O, Giannopoulou I, Koskolou M, Zakynthinos S, Kostikas K, Kosmas E, Wagner H, Peraki E, Koutsoukou A, Koulouris N, Wagner PD, Roussos C.
    J Physiol; 2006 Apr 15; 572(Pt 2):539-49. PubMed ID: 16439429
    [Abstract] [Full Text] [Related]

  • 7. Effects of hypoxia on diaphragmatic fatigue in highly trained athletes.
    Vogiatzis I, Georgiadou O, Koskolou M, Athanasopoulos D, Kostikas K, Golemati S, Wagner H, Roussos C, Wagner PD, Zakynthinos S.
    J Physiol; 2007 May 15; 581(Pt 1):299-308. PubMed ID: 17317748
    [Abstract] [Full Text] [Related]

  • 8. Pulmonary gas exchange and breathing pattern during and after exercise in highly trained athletes.
    Caillaud C, Anselme F, Mercier J, Préfaut C.
    Eur J Appl Physiol Occup Physiol; 1993 May 15; 67(5):431-7. PubMed ID: 8299615
    [Abstract] [Full Text] [Related]

  • 9. Acute hypervolaemia improves arterial oxygen pressure in athletes with exercise-induced hypoxaemia.
    Zavorsky GS, Walley KR, Hunte GS, McKenzie DC, Sexsmith GP, Russell JA.
    Exp Physiol; 2003 Jul 15; 88(4):555-64. PubMed ID: 12861344
    [Abstract] [Full Text] [Related]

  • 10. [Pulmonary gas exchange during exercise in healthy subjects].
    Moinard J, Yquel R, Manier G.
    Rev Mal Respir; 2004 Nov 15; 21(5 Pt 1):950-60. PubMed ID: 15622342
    [Abstract] [Full Text] [Related]

  • 11. Decreased lung capillary blood volume post-exercise is compensated by increased membrane diffusing capacity.
    Johns DP, Berry D, Maskrey M, Wood-Baker R, Reid DW, Walters EH, Walls J.
    Eur J Appl Physiol; 2004 Oct 15; 93(1-2):96-101. PubMed ID: 15278353
    [Abstract] [Full Text] [Related]

  • 12. Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation.
    Hopkins SR.
    Adv Exp Med Biol; 2006 Oct 15; 588():17-30. PubMed ID: 17089876
    [Abstract] [Full Text] [Related]

  • 13. Exercise-induced oxyhaemoglobin desaturation, ventilatory limitation and lung diffusing capacity in women during and after exercise.
    Walls J, Maskrey M, Wood-Baker R, Stedman W.
    Eur J Appl Physiol; 2002 Jun 15; 87(2):145-52. PubMed ID: 12070625
    [Abstract] [Full Text] [Related]

  • 14. Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes.
    Hopkins SR, Gavin TP, Siafakas NM, Haseler LJ, Olfert IM, Wagner H, Wagner PD.
    J Appl Physiol (1985); 1998 Oct 15; 85(4):1523-32. PubMed ID: 9760350
    [Abstract] [Full Text] [Related]

  • 15. Exhaled nitric oxide level during and after heavy exercise in athletes with exercise-induced hypoxaemia.
    Kippelen P, Caillaud C, Robert E, Masmoudi K, Préfaut C.
    Pflugers Arch; 2002 Jun 15; 444(3):397-404. PubMed ID: 12111248
    [Abstract] [Full Text] [Related]

  • 16. Peripheral chemoresponsiveness during exercise in male athletes with exercise-induced arterial hypoxaemia.
    Granger EA, Cooper TK, Hopkins SR, McKenzie DC, Dominelli P.
    Exp Physiol; 2020 Nov 15; 105(11):1960-1970. PubMed ID: 32857874
    [Abstract] [Full Text] [Related]

  • 17. Exercise-induced arterial hypoxaemia in active young women.
    Guenette JA, Sheel AW.
    Appl Physiol Nutr Metab; 2007 Dec 15; 32(6):1263-73. PubMed ID: 18059604
    [Abstract] [Full Text] [Related]

  • 18. The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small.
    Vogiatzis I, Zakynthinos S, Boushel R, Athanasopoulos D, Guenette JA, Wagner H, Roussos C, Wagner PD.
    J Physiol; 2008 May 01; 586(9):2381-91. PubMed ID: 18339692
    [Abstract] [Full Text] [Related]

  • 19. Role of lung inflammatory mediators as a cause of exercise-induced arterial hypoxemia in young athletes.
    Wetter TJ, Xiang Z, Sonetti DA, Haverkamp HC, Rice AJ, Abbasi AA, Meyer KC, Dempsey JA.
    J Appl Physiol (1985); 2002 Jul 01; 93(1):116-26. PubMed ID: 12070194
    [Abstract] [Full Text] [Related]

  • 20. Relationship between decreased oxyhaemoglobin saturation and exhaled nitric oxide during exercise.
    Sheel AW, Edwards MR, McKenzie DC.
    Acta Physiol Scand; 2000 Jun 01; 169(2):149-56. PubMed ID: 10848645
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.