These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 10918655

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Ventricular-fold dynamics in human phonation.
    Bailly L, Bernardoni NH, Müller F, Rohlfs AK, Hess M.
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [Abstract] [Full Text] [Related]

  • 5. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X, Bielamowicz S, Luo H, Mittal R.
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A, Fukuda H, Kawaida M, Kanzaki J.
    Eur Arch Otorhinolaryngol; 1996 Mar; 253(6):356-63. PubMed ID: 8858261
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Optimized transformation of the glottal motion into a mechanical model.
    Triep M, Brücker C, Stingl M, Döllinger M.
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [Abstract] [Full Text] [Related]

  • 11. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT, Ternström S, Svec JG.
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [Abstract] [Full Text] [Related]

  • 12. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY, Solomon NP, Luschei ES, Titze IR, Liu K, Fu TC, Hsu MM.
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [Abstract] [Full Text] [Related]

  • 13. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK, Kojima T, Chang S, Luo H, Valenzuela CV, Rousseau B.
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS, Hanson DG, Gerratt BR, Trapp TK, Macagba C, Natividad M.
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [Abstract] [Full Text] [Related]

  • 16. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH, Lipton RJ, McCaffrey TV.
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O, Lohscheller J, Doellinger M, Eysholdt U, Hoppe U.
    Folia Phoniatr Logop; 2006 May; 58(3):175-85. PubMed ID: 16636565
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T, Ogawa M, Hosokawa K, Kato C, Inohara H.
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.