These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 10929939

  • 1. Evidence of chlorophyll synthesis pathway alteration in desiccated barley leaves.
    Le Lay P, Eullaffroy P, Juneau P, Popovic R.
    Plant Cell Physiol; 2000 May; 41(5):565-70. PubMed ID: 10929939
    [Abstract] [Full Text] [Related]

  • 2. Spectroscopic analysis of desiccation-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves.
    Le Lay P, Böddi B, Kovacevic D, Juneau P, Dewez D, Popovic R.
    Plant Physiol; 2001 Sep; 127(1):202-11. PubMed ID: 11553748
    [Abstract] [Full Text] [Related]

  • 3. The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process.
    Schoefs B, Bertrand M.
    FEBS Lett; 2000 Dec 15; 486(3):243-6. PubMed ID: 11119711
    [Abstract] [Full Text] [Related]

  • 4. Carotenoid dependence of the protochlorophyllide to chlorophyllide phototransformation in dark-grown wheat seedlings.
    Yahubyan G, Minkov I, Sundqvist C.
    J Photochem Photobiol B; 2001 Dec 31; 65(2-3):171-6. PubMed ID: 11809376
    [Abstract] [Full Text] [Related]

  • 5. Protochlorophyllide phototransformation in the bundle sheath cells of Zea mays.
    Marchand M, Dewez D, Franck F, Popovic R.
    J Photochem Photobiol B; 2004 Jul 19; 75(1-2):73-80. PubMed ID: 15246353
    [Abstract] [Full Text] [Related]

  • 6. Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves.
    Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W.
    Planta; 2003 Jan 19; 216(3):475-83. PubMed ID: 12520340
    [Abstract] [Full Text] [Related]

  • 7. Early reactions of light-induced protochlorophyllide and chlorophyllide transformations analyzed in vivo at room temperature with a diode array spectrofluorometer.
    Böddi B, Popovic R, Franck F.
    J Photochem Photobiol B; 2003 Jan 19; 69(1):31-9. PubMed ID: 12547494
    [Abstract] [Full Text] [Related]

  • 8. Visualization and characterization of prolamellar bodies with atomic force microscopy.
    Grzyb JM, Solymosi K, Strzałka K, Mysliwa-Kurdziel B.
    J Plant Physiol; 2013 Sep 15; 170(14):1217-27. PubMed ID: 23777838
    [Abstract] [Full Text] [Related]

  • 9. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B, Bertrand M, Funk C.
    Photochem Photobiol; 2000 Nov 15; 72(5):660-8. PubMed ID: 11107852
    [Abstract] [Full Text] [Related]

  • 10. Enzymatic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein.
    Reinbothe S, Reinbothe C, Runge S, Apel K.
    J Cell Biol; 1995 Apr 15; 129(2):299-308. PubMed ID: 7721935
    [Abstract] [Full Text] [Related]

  • 11. Biosynthesis of chlorophyll from protochlorophyll(ide) in green plant leaves.
    Ignatov NV, Litvin FF.
    Biochemistry (Mosc); 2002 Aug 15; 67(8):949-55. PubMed ID: 12223097
    [Abstract] [Full Text] [Related]

  • 12. The association of protein synthesis with protochlorophyllide holochrome regeneration in dark-grown barley leaves.
    Alscher RG, Hawkes SP, Sauer K.
    Biochem Biophys Res Commun; 1976 Nov 22; 73(2):240-7. PubMed ID: 999709
    [No Abstract] [Full Text] [Related]

  • 13. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls.
    Erdei AL, Kósa A, Böddi B.
    Photosynth Res; 2019 Apr 22; 140(1):93-102. PubMed ID: 30225812
    [Abstract] [Full Text] [Related]

  • 14. Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley.
    Franck F, Strzalka K.
    FEBS Lett; 1992 Aug 31; 309(1):73-7. PubMed ID: 1511748
    [Abstract] [Full Text] [Related]

  • 15. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.).
    Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K.
    Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3254-8. PubMed ID: 7724548
    [Abstract] [Full Text] [Related]

  • 16. [Chlorophyll a and b biosynthesis in the dark in etiolated leaves infiltrated by exogenous chlorophyllide a].
    Rudoĭ AB, Vezitskiĭ AIu.
    Biokhimiia; 1976 Jan 11; 41(1):91-7. PubMed ID: 1276264
    [Abstract] [Full Text] [Related]

  • 17. Experimental approach to elucidating the mechanism of light-independent chlorophyll biosynthesis in greening barley.
    Raskin VI, Schwartz A.
    Plant Physiol; 2003 Sep 11; 133(1):25-8. PubMed ID: 12970471
    [No Abstract] [Full Text] [Related]

  • 18. Chlorophyll Biosynthetic Reactions during Senescence of Excised Barley (Hordeum vulgare L. cv IB 65) Leaves.
    Hukmani P, Tripathy BC.
    Plant Physiol; 1994 Aug 11; 105(4):1295-1300. PubMed ID: 12232286
    [Abstract] [Full Text] [Related]

  • 19. In situ conversion of protochlorophyllide b to protochlorophyllide a in barley. Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts.
    Reinbothe S, Pollmann S, Reinbothe C.
    J Biol Chem; 2003 Jan 10; 278(2):800-6. PubMed ID: 12401789
    [Abstract] [Full Text] [Related]

  • 20. Initial stages of angiosperm greening monitored by low-temperature fluorescence spectra and fluorescence lifetimes.
    Mysliwa-Kurdziel B, Stecka A, Strzalka K.
    Methods Mol Biol; 2012 Jan 10; 875():231-9. PubMed ID: 22573443
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.