These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 10931908

  • 1. Analysis of the beta-glucoside utilization (bgl) genes of Shigella sonnei: evolutionary implications for their maintenance in a cryptic state.
    Kharat AS, Mahadevan S.
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2039-2049. PubMed ID: 10931908
    [Abstract] [Full Text] [Related]

  • 2. Diverse pathways for salicin utilization in Shigella sonnei and Escherichia coli carrying an impaired bgl operon.
    Desai SK, Nandimath K, Mahadevan S.
    Arch Microbiol; 2010 Oct; 192(10):821-33. PubMed ID: 20697693
    [Abstract] [Full Text] [Related]

  • 3. Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.
    Harwani D.
    Braz J Microbiol; 2014 Oct; 45(4):1139-44. PubMed ID: 25763016
    [Abstract] [Full Text] [Related]

  • 4. A comparative study of the evolution of cellobiose utilization in Escherichia coli and Shigella sonnei.
    Joseph AM, Sonowal R, Mahadevan S.
    Arch Microbiol; 2017 Mar; 199(2):247-257. PubMed ID: 27695910
    [Abstract] [Full Text] [Related]

  • 5. Plasmid-mediated suppression of the mutational activation of the bgl operon in Shigella sonnei.
    Kharat AS, Mahadevan S.
    Acta Biochim Pol; 1999 Mar; 46(4):853-61. PubMed ID: 10824852
    [Abstract] [Full Text] [Related]

  • 6. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli.
    Raghunand TR, Mahadevan S.
    FEMS Microbiol Lett; 2003 Jun 27; 223(2):267-74. PubMed ID: 12829297
    [Abstract] [Full Text] [Related]

  • 7. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans.
    el Hassouni M, Henrissat B, Chippaux M, Barras F.
    J Bacteriol; 1992 Feb 27; 174(3):765-77. PubMed ID: 1732212
    [Abstract] [Full Text] [Related]

  • 8. Directed evolution of cellobiose utilization in Escherichia coli K12.
    Kricker M, Hall BG.
    Mol Biol Evol; 1984 Feb 27; 1(2):171-82. PubMed ID: 6400650
    [Abstract] [Full Text] [Related]

  • 9. Positive and negative regulation of the bgl operon in Escherichia coli.
    Mahadevan S, Reynolds AE, Wright A.
    J Bacteriol; 1987 Jun 27; 169(6):2570-8. PubMed ID: 3294798
    [Abstract] [Full Text] [Related]

  • 10. Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli.
    Zhang Z, Zhou K, Tran D, Saier M.
    Int J Mol Sci; 2022 Jan 28; 23(3):. PubMed ID: 35163427
    [Abstract] [Full Text] [Related]

  • 11. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes.
    Schnetz K, Toloczyki C, Rak B.
    J Bacteriol; 1987 Jun 28; 169(6):2579-90. PubMed ID: 3034860
    [Abstract] [Full Text] [Related]

  • 12. Cryptic operon for beta-glucoside metabolism in Escherichia coli K12: genetic evidence for a regulatory protein.
    Defez R, De Felice M.
    Genetics; 1981 Jan 28; 97(1):11-25. PubMed ID: 6266910
    [Abstract] [Full Text] [Related]

  • 13. A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.
    Parker LL, Hall BG.
    Genetics; 1988 Jul 28; 119(3):485-90. PubMed ID: 3042507
    [Abstract] [Full Text] [Related]

  • 14. Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains.
    Neelakanta G, Sankar TS, Schnetz K.
    Appl Environ Microbiol; 2009 Apr 28; 75(8):2284-93. PubMed ID: 19233952
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation.
    Gulati A, Mahadevan S.
    Genes Cells; 2000 Apr 28; 5(4):239-50. PubMed ID: 10792463
    [Abstract] [Full Text] [Related]

  • 16. A mutation in a new gene, bglJ, activates the bgl operon in Escherichia coli K-12.
    Giel M, Desnoyer M, Lopilato J.
    Genetics; 1996 Jun 28; 143(2):627-35. PubMed ID: 8725214
    [Abstract] [Full Text] [Related]

  • 17. Suppression of the Bgl+ phenotype of a delta hns strain of Escherichia coli by a Bacillus subtilis antiterminator binding site.
    Beloin C, Hirschbein L, Le Hégarat F.
    Mol Gen Genet; 1996 Apr 10; 250(6):761-6. PubMed ID: 8628237
    [Abstract] [Full Text] [Related]

  • 18. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog.
    Le Coq D, Lindner C, Krüger S, Steinmetz M, Stülke J.
    J Bacteriol; 1995 Mar 10; 177(6):1527-35. PubMed ID: 7883710
    [Abstract] [Full Text] [Related]

  • 19. Activation of the bgl operon by adaptive mutation.
    Hall BG.
    Mol Biol Evol; 1998 Jan 10; 15(1):1-5. PubMed ID: 9491599
    [Abstract] [Full Text] [Related]

  • 20. Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis.
    Krüger S, Hecker M.
    J Bacteriol; 1995 Oct 10; 177(19):5590-7. PubMed ID: 7559347
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.