These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


490 related items for PubMed ID: 10934645

  • 1. Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298.
    Coxon FP, Helfrich MH, Van't Hof R, Sebti S, Ralston SH, Hamilton A, Rogers MJ.
    J Bone Miner Res; 2000 Aug; 15(8):1467-76. PubMed ID: 10934645
    [Abstract] [Full Text] [Related]

  • 2. Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro.
    Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ.
    Bone; 2001 May; 28(5):465-73. PubMed ID: 11344045
    [Abstract] [Full Text] [Related]

  • 3. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates.
    Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ.
    J Pharmacol Exp Ther; 2001 Feb; 296(2):235-42. PubMed ID: 11160603
    [Abstract] [Full Text] [Related]

  • 4. Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo.
    Coxon FP, Ebetino FH, Mules EH, Seabra MC, McKenna CE, Rogers MJ.
    Bone; 2005 Sep; 37(3):349-58. PubMed ID: 16006204
    [Abstract] [Full Text] [Related]

  • 5. Inhibitory effects of mevastatin and a geranylgeranyl transferase I inhibitor (GGTI-2166) on mononuclear osteoclast formation induced by receptor activator of NF kappa B ligand (RANKL) or tumor necrosis factor-alpha (TNF-alpha).
    Woo JT, Nakagawa H, Krecic AM, Nagai K, Hamilton AD, Sebti SM, Stern PH.
    Biochem Pharmacol; 2005 Jan 01; 69(1):87-95. PubMed ID: 15588717
    [Abstract] [Full Text] [Related]

  • 6. Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro.
    Idris AI, Rojas J, Greig IR, Van't Hof RJ, Ralston SH.
    Calcif Tissue Int; 2008 Mar 01; 82(3):191-201. PubMed ID: 18259679
    [Abstract] [Full Text] [Related]

  • 7. Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases.
    Dunford JE, Rogers MJ, Ebetino FH, Phipps RJ, Coxon FP.
    J Bone Miner Res; 2006 May 01; 21(5):684-94. PubMed ID: 16734383
    [Abstract] [Full Text] [Related]

  • 8. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.
    Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G.
    Arch Biochem Biophys; 2000 Jan 01; 373(1):231-41. PubMed ID: 10620343
    [Abstract] [Full Text] [Related]

  • 9. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo.
    Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF.
    J Bone Miner Res; 1995 Oct 01; 10(10):1478-87. PubMed ID: 8686503
    [Abstract] [Full Text] [Related]

  • 10. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras.
    Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ.
    J Bone Miner Res; 1998 Apr 01; 13(4):581-9. PubMed ID: 9556058
    [Abstract] [Full Text] [Related]

  • 11. In vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts.
    Kellinsalmi M, Mönkkönen H, Mönkkönen J, Leskelä HV, Parikka V, Hämäläinen M, Lehenkari P.
    Basic Clin Pharmacol Toxicol; 2005 Dec 01; 97(6):382-91. PubMed ID: 16364054
    [Abstract] [Full Text] [Related]

  • 12. Bisphosphonates: mode of action and pharmacology.
    Russell RG.
    Pediatrics; 2007 Mar 01; 119 Suppl 2():S150-62. PubMed ID: 17332236
    [Abstract] [Full Text] [Related]

  • 13. Molecular mechanisms of action of bisphosphonates: current status.
    Roelofs AJ, Thompson K, Gordon S, Rogers MJ.
    Clin Cancer Res; 2006 Oct 15; 12(20 Pt 2):6222s-6230s. PubMed ID: 17062705
    [Abstract] [Full Text] [Related]

  • 14. Antagonistic effects of different classes of bisphosphonates in osteoclasts and macrophages in vitro.
    Frith JC, Rogers MJ.
    J Bone Miner Res; 2003 Feb 15; 18(2):204-12. PubMed ID: 12568397
    [Abstract] [Full Text] [Related]

  • 15. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: A clue to the mechanism of action of nitrogen-containing bisphosphonates.
    van beek E, Löwik C, van der Pluijm G, Papapoulos S.
    J Bone Miner Res; 1999 May 15; 14(5):722-9. PubMed ID: 10320520
    [Abstract] [Full Text] [Related]

  • 16. Antitumor effects of bisphosphonates.
    Green JR.
    Cancer; 2003 Feb 01; 97(3 Suppl):840-7. PubMed ID: 12548584
    [Abstract] [Full Text] [Related]

  • 17. New insights into the molecular mechanisms of action of bisphosphonates.
    Rogers MJ.
    Curr Pharm Des; 2003 Feb 01; 9(32):2643-58. PubMed ID: 14529538
    [Abstract] [Full Text] [Related]

  • 18. Nitrogen-containing bisphosphonate mechanism of action.
    Reszka AA, Rodan GA.
    Mini Rev Med Chem; 2004 Sep 01; 4(7):711-9. PubMed ID: 15379639
    [Abstract] [Full Text] [Related]

  • 19. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2.
    Nishida S, Tsubaki M, Hoshino M, Namimatsu A, Uji H, Yoshioka S, Tanimori Y, Yanae M, Iwaki M, Irimajiri K.
    Biochem Biophys Res Commun; 2005 Mar 04; 328(1):91-7. PubMed ID: 15670755
    [Abstract] [Full Text] [Related]

  • 20. Breast cancer cells inhibit spontaneous and bisphosphonate-induced osteoclast apoptosis.
    Hussein O, Tiedemann K, Komarova SV.
    Bone; 2011 Feb 04; 48(2):202-11. PubMed ID: 20849994
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.