These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
406 related items for PubMed ID: 10934780
1. Metabolism of tryptophan in the liver: interference with decarboxylation of other aromatic amino acids. Drsata J, Marklová E. Acta Medica (Hradec Kralove); 2000; 43(1):15-7. PubMed ID: 10934780 [Abstract] [Full Text] [Related]
2. Decarboxylation of L-dopa and 5-hydroxytryptophan in dispersed rat pancreas acinar cells. Yu EW, Stern L, Tenenhouse A. Pharmacology; 1984; 29(4):185-92. PubMed ID: 6494232 [Abstract] [Full Text] [Related]
3. The influence of starvation and tryptophan administration on the metabolism of phenylalanine, tyrosine and tryptophan in isolated rat liver cells. Salter M, Stanley JC, Fisher MJ, Pogson CI. Biochem J; 1984 Jul 15; 221(2):431-8. PubMed ID: 6477476 [Abstract] [Full Text] [Related]
4. Aromatic-L-amino-acid decarboxylase activity in mouse pancreatic islets. Lindström P. Biochim Biophys Acta; 1986 Nov 19; 884(2):276-81. PubMed ID: 3533158 [Abstract] [Full Text] [Related]
5. Effect of aromatic acids on the influx of aromatic amino acids in rat brain slices. Lähdesmäki P, Hannus ML. Exp Brain Res; 1977 Dec 19; 30(4):539-48. PubMed ID: 598439 [Abstract] [Full Text] [Related]
6. Purification and characterization of aromatic L-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme. Shirota K, Fujisawa H. J Neurochem; 1988 Aug 19; 51(2):426-34. PubMed ID: 3392537 [Abstract] [Full Text] [Related]
7. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation. Soares-da-Silva P, Pinto-do-O PC. Br J Pharmacol; 1996 Mar 19; 117(6):1187-92. PubMed ID: 8882614 [Abstract] [Full Text] [Related]
8. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Salter M, Knowles RG, Pogson CI. Biochem J; 1986 Mar 15; 234(3):635-47. PubMed ID: 2872885 [Abstract] [Full Text] [Related]
9. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. Torrens-Spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J. J Biol Chem; 2013 Jan 25; 288(4):2376-87. PubMed ID: 23204519 [Abstract] [Full Text] [Related]
10. The control of aromatic amino acid catabolism and its relationship to neurotransmitter amine synthesis. Pogson CI, Knowles RG, Salter M. Crit Rev Neurobiol; 1989 Jan 25; 5(1):29-64. PubMed ID: 2569940 [Abstract] [Full Text] [Related]
11. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89. Yuwen L, Zhang FL, Chen QH, Lin SJ, Zhao YL, Li ZY. Sci Rep; 2013 Jan 25; 3():1753. PubMed ID: 23628927 [Abstract] [Full Text] [Related]
12. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules. Soares-da-Silva P, Fernandes MH, Pinto-do-O PC. Br J Pharmacol; 1994 Jun 25; 112(2):611-5. PubMed ID: 8075877 [Abstract] [Full Text] [Related]
13. Inhibition of aromatic amino acid decarboxylase by a group of new potential nonsteroidal anti-inflammatory drugs with antileukotrienic effects. Drsata J, Kuchar M. Acta Medica (Hradec Kralove); 2003 Jun 25; 46(4):147-51. PubMed ID: 14965164 [Abstract] [Full Text] [Related]
15. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems. Salter M, Knowles RG, Pogson CI. Biochem J; 1986 Jan 15; 233(2):499-506. PubMed ID: 3954748 [Abstract] [Full Text] [Related]