These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 10936199

  • 1. Mobilizing store Ca(2+) in the presence of La(3+) evokes exocytosis in bovine chromaffin cells.
    Marley PD, Bales PJ, Zerbes M, Powis DA, O'Farrell M.
    J Neurochem; 2000 Sep; 75(3):1162-71. PubMed ID: 10936199
    [Abstract] [Full Text] [Related]

  • 2. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M, Clark CL, Powis DA.
    Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355
    [Abstract] [Full Text] [Related]

  • 3. Rundown of secretion after depletion of intracellular calcium stores in bovine adrenal chromaffin cells.
    Pan CY, Fox AP.
    J Neurochem; 2000 Sep; 75(3):1132-9. PubMed ID: 10936195
    [Abstract] [Full Text] [Related]

  • 4. Effect of Gd3+ on bradykinin-induced catecholamine secretion from bovine adrenal chromaffin cells.
    Bales PJ, Zerbes M, Powis DA, Marley PD.
    Br J Pharmacol; 1999 Dec; 128(7):1435-44. PubMed ID: 10602322
    [Abstract] [Full Text] [Related]

  • 5. Caffeine stimulates Ca(2+) entry through store-operated channels to activate tyrosine hydroxylase in bovine chromaffin cells.
    McKenzie S, Marley PD.
    Eur J Neurosci; 2002 May; 15(9):1485-92. PubMed ID: 12028358
    [Abstract] [Full Text] [Related]

  • 6. Bidirectional modulation of exocytosis by angiotensin II involves multiple G-protein-regulated transduction pathways in chromaffin cells.
    Teschemacher AG, Seward EP.
    J Neurosci; 2000 Jul 01; 20(13):4776-85. PubMed ID: 10864935
    [Abstract] [Full Text] [Related]

  • 7. Catecholamine secretion from bovine adrenal chromaffin cells: the role of the Na+/Ca2+ exchanger and the intracellular Ca2+ pool.
    Pan CY, Kao LS.
    J Neurochem; 1997 Sep 01; 69(3):1085-92. PubMed ID: 9282931
    [Abstract] [Full Text] [Related]

  • 8. Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature.
    Padín JF, Fernández-Morales JC, Olivares R, Vestring S, Arranz-Tagarro JA, Calvo-Gallardo E, de Pascual R, Gandía L, García AG.
    Am J Physiol Cell Physiol; 2013 Jul 15; 305(2):C160-72. PubMed ID: 23596174
    [Abstract] [Full Text] [Related]

  • 9. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I, Trus M, Cohen R, Yizhar O, Nussinovitch I, Atlas D.
    J Neurochem; 2006 Apr 15; 97(1):116-27. PubMed ID: 16515555
    [Abstract] [Full Text] [Related]

  • 10. Bradykinin and histamine-induced cytosolic calcium increase in capillary endothelial cells of bovine adrenal medulla.
    Vinet R, Cortés MP, Alvarez R, Delpiano MA.
    Cell Biol Int; 2014 Sep 15; 38(9):1023-31. PubMed ID: 24798323
    [Abstract] [Full Text] [Related]

  • 11. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular Ca(2+)-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells.
    Takekoshi K, Ishii K, Kawakami Y, Isobe K, Nakai T.
    Endocrinology; 2001 Jul 15; 142(7):3075-86. PubMed ID: 11416030
    [Abstract] [Full Text] [Related]

  • 12. Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current.
    Wallace DJ, Chen C, Marley PD.
    J Physiol; 2002 May 01; 540(Pt 3):921-39. PubMed ID: 11986380
    [Abstract] [Full Text] [Related]

  • 13. Ca(2+)-dependent K(+) current and exocytosis in responses to caffeine and muscarine in voltage-clamped guinea-pig adrenal chromaffin cells.
    Ohta T, Wakade AR, Nakazato Y, Ito S.
    J Neurochem; 2001 Sep 01; 78(6):1243-55. PubMed ID: 11579133
    [Abstract] [Full Text] [Related]

  • 14. Ca(2+) influx stimulated phospholipase C activity in bovine adrenal chromaffin cells: responses to K(+) depolarization and histamine.
    Roberts-Thomson EL, Saunders HI, Palmer SM, Powis DA, Dunkley PR, Bunn SJ.
    Eur J Pharmacol; 2000 Jun 16; 398(2):199-207. PubMed ID: 10854831
    [Abstract] [Full Text] [Related]

  • 15. Histamine causes Ca2+ entry via both a store-operated and a store-independent pathway in bovine adrenal chromaffin cells.
    Zerbes M, Bunn SJ, Powis DA.
    Cell Calcium; 1998 Jun 16; 23(6):379-86. PubMed ID: 9924629
    [Abstract] [Full Text] [Related]

  • 16. Novel synthetic sulfoglycolipid IG20 facilitates exocytosis in chromaffin cells through the regulation of sodium channels.
    Crespo-Castrillo A, Punzón E, de Pascual R, Maroto M, Padín JF, García-Álvarez I, Nanclares C, Ruiz-Pascual L, Gandía L, Fernández-Mayoralas A, García AG.
    J Neurochem; 2015 Dec 16; 135(5):880-96. PubMed ID: 26365051
    [Abstract] [Full Text] [Related]

  • 17. Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria.
    Alés E, Fuentealba J, García AG, López MG.
    Eur J Neurosci; 2005 Jan 16; 21(1):142-50. PubMed ID: 15654851
    [Abstract] [Full Text] [Related]

  • 18. Distinct patterns of exocytosis elicited by Ca2+, Sr2+ and Ba2+ in bovine chromaffin cells.
    Baraibar AM, de Pascual R, Camacho M, Domínguez N, David Machado J, Gandía L, Borges R.
    Pflugers Arch; 2018 Oct 16; 470(10):1459-1471. PubMed ID: 29926228
    [Abstract] [Full Text] [Related]

  • 19. Histamine-induced Ca2+ entry precedes Ca2+ mobilization in bovine adrenal chromaffin cells.
    Cheek TR, Murawsky MM, Stauderman KA.
    Biochem J; 1994 Dec 01; 304 ( Pt 2)(Pt 2):469-76. PubMed ID: 7998982
    [Abstract] [Full Text] [Related]

  • 20. Histamine-evoked chromaffin cell scinderin redistribution, F-actin disassembly, and secretion: in the absence of cortical F-actin disassembly, an increase in intracellular Ca2+ fails to trigger exocytosis.
    Zhang L, Rodríguez Del Castillo A, Trifaró JM.
    J Neurochem; 1995 Sep 01; 65(3):1297-308. PubMed ID: 7643107
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.