These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 1094095

  • 21. Mutants affecting histidine utilization in Aspergillus nidulans.
    Polkinghorne M, Hynes MJ.
    Genet Res; 1975 Apr; 25(2):119-35. PubMed ID: 1102388
    [No Abstract] [Full Text] [Related]

  • 22. Effects on chick growth of adding various non-protein nitrogen sources or dried autoclaved poultry manure to diets containing crystalline essential amino acids.
    Lee DJ, Blair R.
    Br Poult Sci; 1972 May; 13(3):243-9. PubMed ID: 5029888
    [No Abstract] [Full Text] [Related]

  • 23. The regulation of urease activity in Aspergillus nidulans.
    Mackay EM, Pateman JA.
    Biochem Genet; 1982 Aug; 20(7-8):763-76. PubMed ID: 6753831
    [Abstract] [Full Text] [Related]

  • 24. Basic and neutral amino acid transport in Aspergillus nidulans.
    Piotrowska M, Stepień PP, Bartnik E, Zakrzewska E.
    J Gen Microbiol; 1976 Jan; 92(1):89-96. PubMed ID: 1466
    [Abstract] [Full Text] [Related]

  • 25. The areA(r) mutation of Aspergillus nidulans confers low pH sensitivity in the presence of ammonium as the only nitrogen source.
    Pereira M, Martinez-Rossi NM.
    Lett Appl Microbiol; 1998 Jul; 27(1):54-6. PubMed ID: 9758458
    [Abstract] [Full Text] [Related]

  • 26. Ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans.
    Bartnik E, Weglenski P, Piotrowska M.
    Mol Gen Genet; 1973 Oct 16; 126(1):75-84. PubMed ID: 4591372
    [No Abstract] [Full Text] [Related]

  • 27. Completing the purine utilisation pathway of Aspergillus nidulans.
    Gournas C, Oestreicher N, Amillis S, Diallinas G, Scazzocchio C.
    Fungal Genet Biol; 2011 Aug 16; 48(8):840-8. PubMed ID: 21419234
    [Abstract] [Full Text] [Related]

  • 28. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose.
    Fekete E, Karaffa L, Sándor E, Bányai I, Seiboth B, Gyémánt G, Sepsi A, Szentirmai A, Kubicek CP.
    Arch Microbiol; 2004 Jan 16; 181(1):35-44. PubMed ID: 14624333
    [Abstract] [Full Text] [Related]

  • 29. Mutations simultaneously affecting ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans.
    Bartnik E, Guzewska J, Weglenski P.
    Mol Gen Genet; 1973 Oct 16; 126(1):85-92. PubMed ID: 4591374
    [No Abstract] [Full Text] [Related]

  • 30. The genetic control of xanthine dehydrogenase and urate oxidase synthess in Aspergillus nidulans.
    Scazzocchio C, Darlington AJ.
    Bull Soc Chim Biol (Paris); 1967 Dec 18; 49(11):1503-8. PubMed ID: 5583651
    [No Abstract] [Full Text] [Related]

  • 31. Effect of the areA gene on regulation of arginine catabolism in Aspergillus nidulans.
    Bartnik E, Klimczuk J, Kowalska I, Wegleński P.
    Acta Microbiol Pol; 1976 Dec 18; 25(3):169-73. PubMed ID: 62492
    [Abstract] [Full Text] [Related]

  • 32. Inorganic nitrogen assimilation: molecular aspects.
    Kinghorn JR, Unkles SE.
    Prog Ind Microbiol; 1994 Dec 18; 29():181-94. PubMed ID: 7765124
    [No Abstract] [Full Text] [Related]

  • 33. Nitrogen metabolite repression.
    Caddick MX.
    Prog Ind Microbiol; 1994 Dec 18; 29():323-53. PubMed ID: 7765131
    [No Abstract] [Full Text] [Related]

  • 34. Catabolite repression in Aspergillus nidulans; the role of glutamine synthetase.
    Bartnik E, Piotrowska M.
    Acta Microbiol Pol; 1978 Dec 18; 27(4):303-8. PubMed ID: 86277
    [Abstract] [Full Text] [Related]

  • 35. The genetic control of molybdoflavoproteins in Aspergillus nidulans. II. Use of NADH dehydrogenase activity associated with xanthine dehydrogenase to investigate substrate and product inductions.
    Scazzocchio C.
    Mol Gen Genet; 1973 Sep 05; 125(2):147-55. PubMed ID: 4149466
    [No Abstract] [Full Text] [Related]

  • 36. Regulation of the acidic amino-acid permease of Aspergillus nidulans.
    Robinson JH, Anthony C, Drabble WT.
    J Gen Microbiol; 1973 Nov 05; 79(1):65-80. PubMed ID: 4590001
    [No Abstract] [Full Text] [Related]

  • 37. Methylammonium resistance in Aspergillus nidulans.
    Arst HN, Cove DJ.
    J Bacteriol; 1969 Jun 05; 98(3):1284-93. PubMed ID: 5788705
    [Abstract] [Full Text] [Related]

  • 38. Amide utilization in Aspergillus nidulans: evidence for a third amidase enzyme.
    Hynes MJ.
    J Gen Microbiol; 1975 Nov 05; 91(1):99-109. PubMed ID: 1104771
    [Abstract] [Full Text] [Related]

  • 39. The structural gene for NADP L-glutamate dehydrogenase in Aspergillus nidulans.
    Kinghorn JR, Pateman JA.
    J Gen Microbiol; 1975 Feb 05; 86(2):294-300. PubMed ID: 234511
    [Abstract] [Full Text] [Related]

  • 40. AgtA, the dicarboxylic amino acid transporter of Aspergillus nidulans, is concertedly down-regulated by exquisite sensitivity to nitrogen metabolite repression and ammonium-elicited endocytosis.
    Apostolaki A, Erpapazoglou Z, Harispe L, Billini M, Kafasla P, Kizis D, Peñalva MA, Scazzocchio C, Sophianopoulou V.
    Eukaryot Cell; 2009 Mar 05; 8(3):339-52. PubMed ID: 19168757
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.