These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 10952571
21. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D. Antimicrob Agents Chemother; 2004 Aug; 48(8):3064-79. PubMed ID: 15273122 [Abstract] [Full Text] [Related]
22. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Marr KA, Lyons CN, Rustad TR, Bowden RA, White TC. Antimicrob Agents Chemother; 1998 Oct; 42(10):2584-9. PubMed ID: 9756759 [Abstract] [Full Text] [Related]
23. Impact of Farnesol as a Modulator of Efflux Pumps in a Fluconazole-Resistant Strain of Candida albicans. Černáková L, Dižová S, Gášková D, Jančíková I, Bujdáková H. Microb Drug Resist; 2019 Oct; 25(6):805-812. PubMed ID: 30785845 [Abstract] [Full Text] [Related]
24. Distinct patterns of gene expression associated with development of fluconazole resistance in serial candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF. Antimicrob Agents Chemother; 1998 Nov; 42(11):2932-7. PubMed ID: 9797228 [Abstract] [Full Text] [Related]
25. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Infect Immun; 2003 Aug; 71(8):4333-40. PubMed ID: 12874310 [Abstract] [Full Text] [Related]
29. Molecular aspects of fluconazole resistance development in Candida albicans. Franz R, Ruhnke M, Morschhäuser J. Mycoses; 1999 Aug; 42(7-8):453-8. PubMed ID: 10546486 [Abstract] [Full Text] [Related]
32. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, Cannon RD. Antimicrob Agents Chemother; 2012 Mar; 56(3):1508-15. PubMed ID: 22203607 [Abstract] [Full Text] [Related]
33. Multidrug-resistant transporter mdr1p-mediated uptake of a novel antifungal compound. Sun N, Li D, Fonzi W, Li X, Zhang L, Calderone R. Antimicrob Agents Chemother; 2013 Dec; 57(12):5931-9. PubMed ID: 24041896 [Abstract] [Full Text] [Related]
35. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis. Salari S, Khosravi AR, Mousavi SA, Nikbakht-Brojeni GH. J Mycol Med; 2016 Mar; 26(1):35-41. PubMed ID: 26627124 [Abstract] [Full Text] [Related]
36. Antifungal drug resistance in pathogenic fungi. Vanden Bossche H, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D. Med Mycol; 1998 Mar; 36 Suppl 1():119-28. PubMed ID: 9988500 [Abstract] [Full Text] [Related]
37. The zinc cluster transcription factor Tac1p regulates PDR16 expression in Candida albicans. Znaidi S, De Deken X, Weber S, Rigby T, Nantel A, Raymond M. Mol Microbiol; 2007 Oct; 66(2):440-52. PubMed ID: 17897373 [Abstract] [Full Text] [Related]
38. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance. Walsh TJ, Kasai M, Francesconi A, Landsman D, Chanock SJ. J Med Vet Mycol; 1997 Oct; 35(2):133-7. PubMed ID: 9147273 [Abstract] [Full Text] [Related]
39. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Sanglard D, Coste AT. Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310 [Abstract] [Full Text] [Related]