These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 10952691

  • 1. Comparison of the pharmacological properties of EDHF-mediated vasorelaxation in guinea-pig cerebral and mesenteric resistance vessels.
    Dong H, Jiang Y, Cole WC, Triggle CR.
    Br J Pharmacol; 2000 Aug; 130(8):1983-91. PubMed ID: 10952691
    [Abstract] [Full Text] [Related]

  • 2. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R, Hiley CR.
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [Abstract] [Full Text] [Related]

  • 3. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery.
    Zygmunt PM, Sørgård M, Petersson J, Johansson R, Högestätt ED.
    Naunyn Schmiedebergs Arch Pharmacol; 2000 May; 361(5):535-42. PubMed ID: 10832608
    [Abstract] [Full Text] [Related]

  • 4. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries.
    Pourageaud F, Bappel-Gozalbes C, Marthan R, Freslon JL.
    Br J Pharmacol; 2000 Nov; 131(6):1211-9. PubMed ID: 11082130
    [Abstract] [Full Text] [Related]

  • 5. Mechanisms of nitric oxide-independent relaxations induced by carbachol and acetylcholine in rat isolated renal arteries.
    Jiang F, Li CG, Rand MJ.
    Br J Pharmacol; 2000 Jul; 130(6):1191-200. PubMed ID: 10903955
    [Abstract] [Full Text] [Related]

  • 6. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED.
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [Abstract] [Full Text] [Related]

  • 7. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F, Dusting GJ.
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [Abstract] [Full Text] [Related]

  • 8. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM, Edwards G, Weston AH, Larsson B, Högestätt ED.
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [Abstract] [Full Text] [Related]

  • 9. Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase.
    Ding H, Kubes P, Triggle C.
    Br J Pharmacol; 2000 Mar; 129(6):1194-200. PubMed ID: 10725268
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries.
    Petersson J, Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1997 Apr; 120(7):1344-50. PubMed ID: 9105711
    [Abstract] [Full Text] [Related]

  • 11. Characterization of endothelium- dependent relaxation in guinea pig basilar artery - effect of hypoxia and role of cytochrome P450 mono-oxygenase.
    Petersson J, Zygmunt PM, Jönsson P, Högestätt ED.
    J Vasc Res; 1998 Apr; 35(4):285-94. PubMed ID: 9701713
    [Abstract] [Full Text] [Related]

  • 12. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H, Waldron GJ, Cole WC, Triggle CR.
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [Abstract] [Full Text] [Related]

  • 13. Dominant role of an endothelium-derived hyperpolarizing factor (EDHF)-like vasodilator in the ciliary vascular bed of the bovine isolated perfused eye.
    McNeish AJ, Wilson WS, Martin W.
    Br J Pharmacol; 2001 Oct; 134(4):912-20. PubMed ID: 11606333
    [Abstract] [Full Text] [Related]

  • 14. Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid.
    Eckman DM, Hopkins N, McBride C, Keef KD.
    Br J Pharmacol; 1998 May; 124(1):181-9. PubMed ID: 9630358
    [Abstract] [Full Text] [Related]

  • 15. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA, Buckley CH, Jones GC, Sandeep TC, Andrews RC, Elliott AI, Gray GA, Williams BC, McKnight JA, Walker BR, Hadoke PW.
    Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664
    [Abstract] [Full Text] [Related]

  • 16. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H, Waldron GJ, Galipeau D, Cole WC, Triggle CR.
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [Abstract] [Full Text] [Related]

  • 17. The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice.
    Chen X, Li Y, Hollenberg M, Triggle CR, Ding H.
    J Cardiovasc Pharmacol; 2012 May; 59(5):413-25. PubMed ID: 22217882
    [Abstract] [Full Text] [Related]

  • 18. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.
    Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K.
    Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983
    [Abstract] [Full Text] [Related]

  • 19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC.
    Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511
    [Abstract] [Full Text] [Related]

  • 20. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.