These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 10960359

  • 1. Rotavirus infection impairs intestinal brush-border membrane Na(+)-solute cotransport activities in young rabbits.
    Halaihel N, Liévin V, Alvarado F, Vasseur M.
    Am J Physiol Gastrointest Liver Physiol; 2000 Sep; 279(3):G587-96. PubMed ID: 10960359
    [Abstract] [Full Text] [Related]

  • 2. Direct inhibitory effect of rotavirus NSP4(114-135) peptide on the Na(+)-D-glucose symporter of rabbit intestinal brush border membrane.
    Halaihel N, Liévin V, Ball JM, Estes MK, Alvarado F, Vasseur M.
    J Virol; 2000 Oct; 74(20):9464-70. PubMed ID: 11000215
    [Abstract] [Full Text] [Related]

  • 3. Rotavirus infection stimulates the Cl- reabsorption process across the intestinal brush-border membrane of young rabbits.
    Lorrot M, Martin S, Vasseur M.
    J Virol; 2003 Sep; 77(17):9305-11. PubMed ID: 12915546
    [Abstract] [Full Text] [Related]

  • 4. Mechanisms of net chloride secretion during rotavirus diarrhea in young rabbits: do intestinal villi secrete chloride?
    Lorrot M, Benhamadouche-Casari H, Vasseur M.
    Cell Physiol Biochem; 2006 Sep; 18(1-3):103-12. PubMed ID: 16914895
    [Abstract] [Full Text] [Related]

  • 5. Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.
    Manoharan P, Gayam S, Arthur S, Palaniappan B, Singh S, Dick GM, Sundaram U.
    Am J Physiol Cell Physiol; 2015 Apr 15; 308(8):C650-6. PubMed ID: 25652450
    [Abstract] [Full Text] [Related]

  • 6. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M, Calonge ML, Peral MJ, Ilundáin AA.
    Pflugers Arch; 2001 Feb 15; 441(5):686-91. PubMed ID: 11294251
    [Abstract] [Full Text] [Related]

  • 7. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A.
    J Membr Biol; 2003 Mar 15; 192(2):89-100. PubMed ID: 12682797
    [Abstract] [Full Text] [Related]

  • 8. Increased Na(+)-dependent D-glucose transport in small intestine of retinyl palmitate treated rats.
    Tomimatsu T, Horie T.
    In Vivo; 2001 Mar 15; 15(1):81-6. PubMed ID: 11286135
    [Abstract] [Full Text] [Related]

  • 9. Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum.
    Cermak R, Landgraf S, Wolffram S.
    Br J Nutr; 2004 Jun 15; 91(6):849-55. PubMed ID: 15182388
    [Abstract] [Full Text] [Related]

  • 10. Heterogeneity of pig intestinal D-glucose transport systems.
    Halaihel N, Gerbaud D, Vasseur M, Alvarado F.
    Am J Physiol; 1999 Dec 15; 277(6):C1130-41. PubMed ID: 10600764
    [Abstract] [Full Text] [Related]

  • 11. Mechanism of inhibition of Na+-glucose cotransport in the chronically inflamed rabbit ileum.
    Sundaram U, Wisel S, Rajendren VM, West AB.
    Am J Physiol; 1997 Oct 15; 273(4):G913-9. PubMed ID: 9357835
    [Abstract] [Full Text] [Related]

  • 12. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T, Horie T.
    Chem Biol Interact; 2005 Aug 15; 155(3):129-39. PubMed ID: 15996645
    [Abstract] [Full Text] [Related]

  • 13. Synthesis of a membrane impermeable D-glucose analogue: studies on the mechanism of nutrient regulation of the intestinal Na+/glucose co-transporter (SGLT1).
    Bagga K, Dyer J, Simmonds R, Scott D, Beechey RB, Shirazi-Beechey SP.
    Biochem Soc Trans; 1997 Aug 15; 25(3):477S. PubMed ID: 9388698
    [No Abstract] [Full Text] [Related]

  • 14. Role of actin in EGF-induced alterations in enterocyte SGLT1 expression.
    Chung BM, Wong JK, Hardin JA, Gall DG.
    Am J Physiol; 1999 Feb 15; 276(2):G463-9. PubMed ID: 9950820
    [Abstract] [Full Text] [Related]

  • 15. Expression of Na+-D-glucose cotransporter in brush-border membrane of the chicken intestine.
    Garriga C, Rovira N, Moretó M, Planas JM.
    Am J Physiol; 1999 Feb 15; 276(2):R627-31. PubMed ID: 9950947
    [Abstract] [Full Text] [Related]

  • 16. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR, Lencer WI, Carlson S, Madara JL.
    J Biol Chem; 1996 Mar 29; 271(13):7738-44. PubMed ID: 8631815
    [Abstract] [Full Text] [Related]

  • 17. Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney.
    Oulianova N, Falk S, Berteloot A.
    J Membr Biol; 2001 Feb 01; 179(3):223-42. PubMed ID: 11246421
    [Abstract] [Full Text] [Related]

  • 18. Rapid enhancement of brush border glucose uptake after exposure of rat jejunal mucosa to glucose.
    Sharp PA, Debnam ES, Srai SK.
    Gut; 1996 Oct 01; 39(4):545-50. PubMed ID: 8944563
    [Abstract] [Full Text] [Related]

  • 19. Stimulation of constitutive nitric oxide uniquely and compensatorily regulates intestinal epithelial cell brush border membrane Na absorption.
    Palaniappan B, Manoharan P, Arthur S, Singh S, Murughiyan U, Sundaram U.
    Physiol Rep; 2019 May 01; 7(9):e14086. PubMed ID: 31074207
    [Abstract] [Full Text] [Related]

  • 20. Na(+)-D-glucose cotransport by intestinal BBMVs of the Antarctic fish Trematomus bernacchii.
    Maffia M, Acierno R, Cillo E, Storelli C.
    Am J Physiol; 1996 Dec 01; 271(6 Pt 2):R1576-83. PubMed ID: 8997355
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.