These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 10967082
1. Energy metabolism in human retinal Müller cells. Winkler BS, Arnold MJ, Brassell MA, Puro DG. Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3183-90. PubMed ID: 10967082 [Abstract] [Full Text] [Related]
2. Effects of L-glutamate/D-aspartate and monensin on lactic acid production in retina and cultured retinal Müller cells. Winkler BS, Sauer MW, Starnes CA. J Neurochem; 2004 Apr; 89(2):514-25. PubMed ID: 15056294 [Abstract] [Full Text] [Related]
3. Modulation of the Pasteur effect in retinal cells: implications for understanding compensatory metabolic mechanisms. Winkler BS, Sauer MW, Starnes CA. Exp Eye Res; 2003 Jun; 76(6):715-23. PubMed ID: 12742354 [Abstract] [Full Text] [Related]
4. Molecular basis for increased lactate formation in the Müller glial cells of retina. Ola MS, LaNoue KF. Brain Res Bull; 2019 Jan; 144():158-163. PubMed ID: 30503222 [Abstract] [Full Text] [Related]
5. Cultured retinal neuronal cells and Müller cells both show net production of lactate. Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC. Neurochem Int; 2004 Jan; 45(2-3):311-20. PubMed ID: 15145547 [Abstract] [Full Text] [Related]
6. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. Xu Y, Ola MS, Berkich DA, Gardner TW, Barber AJ, Palmieri F, Hutson SM, LaNoue KF. J Neurochem; 2007 Apr; 101(1):120-31. PubMed ID: 17394462 [Abstract] [Full Text] [Related]
7. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases. Rueda EM, Johnson JE, Giddabasappa A, Swaroop A, Brooks MJ, Sigel I, Chaney SY, Fox DA. Mol Vis; 2016 Apr; 22():847-85. PubMed ID: 27499608 [Abstract] [Full Text] [Related]
8. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats. Winkler BS, Arnold MJ, Brassell MA, Sliter DR. Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631 [Abstract] [Full Text] [Related]
9. Metabolic mapping in mammalian retina: a biochemical and 3H-2-deoxyglucose autoradiographic study. Winkler BS, Pourcho RG, Starnes C, Slocum J, Slocum N. Exp Eye Res; 2003 Sep; 77(3):327-37. PubMed ID: 12907165 [Abstract] [Full Text] [Related]
10. Nuclear magnetic resonance and biochemical measurements of glucose utilization in the cone-dominant ground squirrel retina. Winkler BS, Starnes CA, Twardy BS, Brault D, Taylor RC. Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4613-9. PubMed ID: 18566456 [Abstract] [Full Text] [Related]
11. Mechanisms of glutamate metabolic signaling in retinal glial (Müller) cells. Poitry S, Poitry-Yamate C, Ueberfeld J, MacLeish PR, Tsacopoulos M. J Neurosci; 2000 Mar 01; 20(5):1809-21. PubMed ID: 10684882 [Abstract] [Full Text] [Related]
12. Glucose metabolism in freshly isolated Müller glial cells from a mammalian retina. Poitry-Yamate CL, Tsacopoulos M. J Comp Neurol; 1992 Jun 08; 320(2):257-66. PubMed ID: 1377718 [Abstract] [Full Text] [Related]
13. Glycolytic and oxidative metabolism in relation to retinal function. Winkler BS. J Gen Physiol; 1981 Jun 08; 77(6):667-92. PubMed ID: 6267165 [Abstract] [Full Text] [Related]
14. Contribution of glial metabolism to neuronal damage caused by partial inhibition of energy metabolism in retina. Zeevalk GD, Nicklas WJ. Exp Eye Res; 1997 Sep 08; 65(3):397-405. PubMed ID: 9299176 [Abstract] [Full Text] [Related]
15. In vitro metabolic competence of the frog retina: effects of glucose and oxygen deprivation. Fliesler SJ, Richards MJ, Miller CY, Mckay S, Winkler BS. Exp Eye Res; 1997 May 08; 64(5):683-92. PubMed ID: 9245897 [Abstract] [Full Text] [Related]
16. Pyruvate protects glucose-deprived Müller cells from nitric oxide-induced oxidative stress by radical scavenging. Frenzel J, Richter J, Eschrich K. Glia; 2005 Dec 08; 52(4):276-88. PubMed ID: 16001426 [Abstract] [Full Text] [Related]
17. An assessment of rat photoreceptor sensitivity to mitochondrial blockade. Winkler BS, Dang L, Malinoski C, Easter SS. Invest Ophthalmol Vis Sci; 1997 Jul 08; 38(8):1569-77. PubMed ID: 9224285 [Abstract] [Full Text] [Related]
18. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. Poitry-Yamate CL, Poitry S, Tsacopoulos M. J Neurosci; 1995 Jul 08; 15(7 Pt 2):5179-91. PubMed ID: 7623144 [Abstract] [Full Text] [Related]
19. Characterization of a Spontaneously Immortalized Murine Müller Glial Cell Line QMMuC-1. Augustine J, Pavlou S, O'Hare M, Harkin K, Stitt A, Curtis T, Xu H, Chen M. Invest Ophthalmol Vis Sci; 2018 Mar 01; 59(3):1666-1674. PubMed ID: 29625493 [Abstract] [Full Text] [Related]
20. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Magistretti PJ, Pellerin L. Philos Trans R Soc Lond B Biol Sci; 1999 Jul 29; 354(1387):1155-63. PubMed ID: 10466143 [Abstract] [Full Text] [Related] Page: [Next] [New Search]