These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 10971222
1. Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and fast-twitch rat skeletal muscle. Wretman C, Widegren U, Lionikas A, Westerblad H, Henriksson J. Acta Physiol Scand; 2000 Sep; 170(1):45-9. PubMed ID: 10971222 [Abstract] [Full Text] [Related]
2. Age-associated changes in MAPK activation in fast- and slow-twitch skeletal muscle of the F344/NNiaHSD X Brown Norway/BiNia rat model. Mylabathula DB, Rice KM, Wang Z, Uddemarri S, Kinnard RS, Blough ER. Exp Gerontol; 2006 Feb; 41(2):205-14. PubMed ID: 16378702 [Abstract] [Full Text] [Related]
3. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture. Higginson J, Wackerhage H, Woods N, Schjerling P, Ratkevicius A, Grunnet N, Quistorff B. Pflugers Arch; 2002 Dec; 445(3):437-43. PubMed ID: 12466948 [Abstract] [Full Text] [Related]
4. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Clausen T, Overgaard K, Nielsen OB. Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479 [Abstract] [Full Text] [Related]
5. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Tannerstedt J, Apró W, Blomstrand E. J Appl Physiol (1985); 2009 Apr; 106(4):1412-8. PubMed ID: 19112158 [Abstract] [Full Text] [Related]
6. Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, Gerrard DE. FASEB J; 2008 Aug; 22(8):2990-3000. PubMed ID: 18417546 [Abstract] [Full Text] [Related]
7. Effect of force development on contraction induced glucose transport in fast twitch rat muscle. Ihlemann J, Ploug T, Galbo H. Acta Physiol Scand; 2001 Apr; 171(4):439-44. PubMed ID: 11421859 [Abstract] [Full Text] [Related]
8. Phorbol esters affect skeletal muscle glucose transport in a fiber type-specific manner. Wright DC, Geiger PC, Rheinheimer MJ, Han DH, Holloszy JO. Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E305-9. PubMed ID: 15053989 [Abstract] [Full Text] [Related]
9. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ. Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1081-8. PubMed ID: 12837666 [Abstract] [Full Text] [Related]
10. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C, Spolaore B, Toniolo L, Stevens L, Bastide B, Cieniewski-Bernard C, Fontana A, Mounier Y, Reggiani C. FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942 [Abstract] [Full Text] [Related]
11. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle. Wright DC, Geiger PC, Holloszy JO, Han DH. Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088 [Abstract] [Full Text] [Related]
12. Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE. Am J Physiol Cell Physiol; 2007 May; 292(5):C1681-9. PubMed ID: 17151143 [Abstract] [Full Text] [Related]
13. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L. Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R408-17. PubMed ID: 21106911 [Abstract] [Full Text] [Related]
14. Decay of Ca2+ and force transients in fast- and slow-twitch skeletal muscles from the rat, mouse and Etruscan shrew. Wetzel P, Gros G. J Exp Biol; 1998 Feb; 201(Pt 3):375-84. PubMed ID: 9503643 [Abstract] [Full Text] [Related]
15. Effects of chronic AICAR administration on the metabolic and contractile phenotypes of rat slow- and fast-twitch skeletal muscles. Bamford JA, Lopaschuk GD, MacLean IM, Reinhart ML, Dixon WT, Putman CT. Can J Physiol Pharmacol; 2003 Nov; 81(11):1072-82. PubMed ID: 14719043 [Abstract] [Full Text] [Related]
16. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers. De Luca A, Liantonio A, Pierno S, Desaphy JF, Leoty C, Conte Camerino D. J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372 [Abstract] [Full Text] [Related]
17. Phosphorylated ERK1/2 protein levels are closely associated with the fast fiber phenotypes in rat hindlimb skeletal muscles. Oishi Y, Ogata T, Ohira Y, Roy RR. Pflugers Arch; 2019 Jul; 471(7):971-982. PubMed ID: 31093758 [Abstract] [Full Text] [Related]
18. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. Racay P, Gregory P, Schwaller B. FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751 [Abstract] [Full Text] [Related]
19. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH, Lamb GD. Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [Abstract] [Full Text] [Related]
20. Expression of cAMP-responsive element binding proteins (CREBs) in fast- and slow-twitch muscles: a signaling pathway to account for the synaptic expression of collagen-tailed subunit (ColQ) of acetylcholinesterase at the rat neuromuscular junction. Choi RC, Chen VP, Luk WK, Yung AW, Ng AH, Dong TT, Tsim KW. Chem Biol Interact; 2013 Mar 25; 203(1):282-6. PubMed ID: 23159887 [Abstract] [Full Text] [Related] Page: [Next] [New Search]