These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


227 related items for PubMed ID: 10975526

  • 1. Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord.
    Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M.
    Cell; 2000 Aug 04; 102(3):363-75. PubMed ID: 10975526
    [Abstract] [Full Text] [Related]

  • 2. Collaborative and specialized functions of Robo1 and Robo2 in spinal commissural axon guidance.
    Jaworski A, Long H, Tessier-Lavigne M.
    J Neurosci; 2010 Jul 14; 30(28):9445-53. PubMed ID: 20631173
    [Abstract] [Full Text] [Related]

  • 3. Leaving the midline: how Robo receptors regulate the guidance of post-crossing spinal commissural axons.
    Reeber SL, Kaprielian Z.
    Cell Adh Migr; 2009 Jul 14; 3(3):300-4. PubMed ID: 19556886
    [Abstract] [Full Text] [Related]

  • 4. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord.
    Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V.
    Dev Dyn; 2005 May 14; 233(1):41-51. PubMed ID: 15768400
    [Abstract] [Full Text] [Related]

  • 5. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3.
    Comer JD, Pan FC, Willet SG, Haldipur P, Millen KJ, Wright CV, Kaltschmidt JA.
    Front Neural Circuits; 2015 May 14; 9():36. PubMed ID: 26257608
    [Abstract] [Full Text] [Related]

  • 6. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons.
    Sabatier C, Plump AS, Le Ma, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M.
    Cell; 2004 Apr 16; 117(2):157-69. PubMed ID: 15084255
    [Abstract] [Full Text] [Related]

  • 7. Axon guidance at the midline of the developing CNS.
    Kaprielian Z, Imondi R, Runko E.
    Anat Rec; 2000 Oct 15; 261(5):176-97. PubMed ID: 11058217
    [Abstract] [Full Text] [Related]

  • 8. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord.
    Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ.
    Cell Rep; 2019 Mar 19; 26(12):3298-3312.e4. PubMed ID: 30893602
    [Abstract] [Full Text] [Related]

  • 9. Slit2 guides both precrossing and postcrossing callosal axons at the midline in vivo.
    Shu T, Sundaresan V, McCarthy MM, Richards LJ.
    J Neurosci; 2003 Sep 03; 23(22):8176-84. PubMed ID: 12954881
    [Abstract] [Full Text] [Related]

  • 10. Axon guidance at the midline choice point.
    Kaprielian Z, Runko E, Imondi R.
    Dev Dyn; 2001 Jun 03; 221(2):154-81. PubMed ID: 11376484
    [Abstract] [Full Text] [Related]

  • 11. Floor plate-derived neuropilin-2 functions as a secreted semaphorin sink to facilitate commissural axon midline crossing.
    Hernandez-Enriquez B, Wu Z, Martinez E, Olsen O, Kaprielian Z, Maness PF, Yoshida Y, Tessier-Lavigne M, Tran TS.
    Genes Dev; 2015 Dec 15; 29(24):2617-32. PubMed ID: 26680304
    [Abstract] [Full Text] [Related]

  • 12. Mis-expression of L1 on pre-crossing spinal commissural axons disrupts pathfinding at the ventral midline.
    Imondi R, Jevince AR, Helms AW, Johnson JE, Kaprielian Z.
    Mol Cell Neurosci; 2007 Dec 15; 36(4):462-71. PubMed ID: 17884558
    [Abstract] [Full Text] [Related]

  • 13. A crucial role for Arf6 in the response of commissural axons to Slit.
    Kinoshita-Kawada M, Hasegawa H, Hongu T, Yanagi S, Kanaho Y, Masai I, Mishima T, Chen X, Tsuboi Y, Rao Y, Yuasa-Kawada J, Wu JY.
    Development; 2019 Feb 04; 146(3):. PubMed ID: 30674481
    [Abstract] [Full Text] [Related]

  • 14. Neuropilin2 regulates the guidance of post-crossing spinal commissural axons in a subtype-specific manner.
    Tran TS, Carlin E, Lin R, Martinez E, Johnson JE, Kaprielian Z.
    Neural Dev; 2013 Jul 31; 8():15. PubMed ID: 23902858
    [Abstract] [Full Text] [Related]

  • 15. Diversity of contralateral commissural projections in the embryonic rodent spinal cord.
    Kadison SR, Kaprielian Z.
    J Comp Neurol; 2004 May 10; 472(4):411-22. PubMed ID: 15065116
    [Abstract] [Full Text] [Related]

  • 16. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord.
    Bernhardt RR.
    J Comp Neurol; 1994 Dec 01; 350(1):122-32. PubMed ID: 7860796
    [Abstract] [Full Text] [Related]

  • 17. Midline crossing and Slit responsiveness of commissural axons require USP33.
    Yuasa-Kawada J, Kinoshita-Kawada M, Wu G, Rao Y, Wu JY.
    Nat Neurosci; 2009 Sep 01; 12(9):1087-9. PubMed ID: 19684588
    [Abstract] [Full Text] [Related]

  • 18. Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance.
    Sun SD, Purdy AM, Walsh GS.
    BMC Neurosci; 2016 Dec 12; 17(1):83. PubMed ID: 27955617
    [Abstract] [Full Text] [Related]

  • 19. Sonic hedgehog induces response of commissural axons to Semaphorin repulsion during midline crossing.
    Parra LM, Zou Y.
    Nat Neurosci; 2010 Jan 12; 13(1):29-35. PubMed ID: 19946319
    [Abstract] [Full Text] [Related]

  • 20. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system.
    Sundaresan V, Mambetisaeva E, Andrews W, Annan A, Knöll B, Tear G, Bannister L.
    J Comp Neurol; 2004 Jan 19; 468(4):467-81. PubMed ID: 14689480
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.