These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. 13C NMR studies of dynamics and synthetase interaction of [4-13C]uracil-labeled Escherichia coli tRNAs. Schweizer MP, Olsen JI, De N, Messner A, Walkiw I, Grant DM. Fed Proc; 1984 Dec; 43(15):2984-6. PubMed ID: 6389182 [No Abstract] [Full Text] [Related]
4. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ. J Mol Biol; 2000 Jun 02; 299(2):431-46. PubMed ID: 10860750 [Abstract] [Full Text] [Related]
5. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation. Belchev B, Yaneva M. Mol Biol (Mosk); 1976 Jun 02; 10(4):663-7. PubMed ID: 15212 [Abstract] [Full Text] [Related]
6. Discriminating among the discriminator bases of tRNAs. Hou YM. Chem Biol; 1997 Feb 02; 4(2):93-6. PubMed ID: 9190291 [Abstract] [Full Text] [Related]
7. Structure-function relations in tRNA. Bock RM. Basic Life Sci; 1973 Feb 02; 1():189-96. PubMed ID: 4589676 [No Abstract] [Full Text] [Related]
8. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Schimmel PR, Söll D. Annu Rev Biochem; 1979 Feb 02; 48():601-48. PubMed ID: 382994 [No Abstract] [Full Text] [Related]
9. Changing the identity of a transfer RNA. Normanly J, Ogden RC, Horvath SJ, Abelson J. Nature; 1979 Feb 02; 321(6067):213-9. PubMed ID: 3086742 [Abstract] [Full Text] [Related]
11. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases. Nureki O, Tateno M, Niimi T, Kohno T, Muramatsu T, Kanno H, Muto Y, Giege R, Yokoyama S. Nucleic Acids Symp Ser; 1991 Feb 02; (25):165-6. PubMed ID: 1726806 [Abstract] [Full Text] [Related]
12. [Chemical modification of the complex of tRNA Phe with phenylalanyl-tRNA synthetase from Escherichia coli]. Ankilova VN, Vlasov VV, Mamaev SV, Nuzhdina NA. Mol Biol (Mosk); 1979 Feb 02; 13(5):994-1000. PubMed ID: 388193 [Abstract] [Full Text] [Related]
13. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH, Pelka H. Fed Proc; 1984 Dec 02; 43(15):2977-80. PubMed ID: 6389181 [Abstract] [Full Text] [Related]
14. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R. Nature; 1990 Sep 20; 347(6290):249-55. PubMed ID: 2205803 [Abstract] [Full Text] [Related]
15. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli). Yang SK, Söll DG, Crothers DM. Biochemistry; 1972 Jun 06; 11(12):2311-20. PubMed ID: 4555033 [No Abstract] [Full Text] [Related]
16. Transfer RNA in solution: selected topics. Schimmel PR, Redfield AG. Annu Rev Biophys Bioeng; 1980 Jun 06; 9():181-221. PubMed ID: 6994589 [No Abstract] [Full Text] [Related]
17. [Role of the anticodon in recognition of tRNA by aminoacyl-tRNA-synthetases]. Kiselev LL. Mol Biol (Mosk); 1983 Jun 06; 17(5):928-48. PubMed ID: 6355823 [Abstract] [Full Text] [Related]
18. Letter: Nuclear magnetic resonance of protein-nucleic acid interactions. II. The E. coli tRNA-Glu complex with glutamyl-tRNA synthetase. Schulman RG, Hilbers CW, Söll D, Yang SK. J Mol Biol; 1974 Dec 15; 90(3):609-11. PubMed ID: 4615173 [No Abstract] [Full Text] [Related]
19. High-resolution nuclear magnetic resonance studies of double helical polynucleotides. Kearns DR. Annu Rev Biophys Bioeng; 1977 Dec 15; 6():477-523. PubMed ID: 326152 [No Abstract] [Full Text] [Related]
20. Crystal structure of an Escherichia coli tRNA(Gly) microhelix at 2.0 A resolution. Förster C, Brauer AB, Perbandt M, Lehmann D, Fürste JP, Betzel Ch, Erdmann VA. Biochem Biophys Res Commun; 2007 Nov 23; 363(3):621-5. PubMed ID: 17888869 [Abstract] [Full Text] [Related] Page: [Next] [New Search]