These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Study of normal breast tissue by in vivo volume localized proton MR spectroscopy: variation of water-fat ratio in relation to the heterogeneity of the breast and the menstrual cycle. Sharma U, Kumar M, Sah RG, Jagannathan NR. Magn Reson Imaging; 2009 Jul; 27(6):785-91. PubMed ID: 19249170 [Abstract] [Full Text] [Related]
4. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H. Phys Med Biol; 2005 Jun 07; 50(11):2451-68. PubMed ID: 15901948 [Abstract] [Full Text] [Related]
5. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture. Dzhongova E, Harwood CR, Thennadil SN. Appl Spectrosc; 2009 Jan 07; 63(1):25-32. PubMed ID: 19146716 [Abstract] [Full Text] [Related]
6. In vivo simultaneous measurement of urea and water in the human stratum corneum by diffuse-reflectance near-infrared spectroscopy. Egawa M. Skin Res Technol; 2009 May 07; 15(2):195-9. PubMed ID: 19622130 [Abstract] [Full Text] [Related]
7. Identification and quantification of intrinsic optical contrast for near-infrared mammography. Quaresima V, Matcher SJ, Ferrari M. Photochem Photobiol; 1998 Jan 07; 67(1):4-14. PubMed ID: 9477760 [Abstract] [Full Text] [Related]
8. Sources of absorption and scattering contrast for near-infrared optical mammography. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ. Acad Radiol; 2001 Mar 07; 8(3):211-8. PubMed ID: 11249084 [Abstract] [Full Text] [Related]
9. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Gebhart SC, Lin WC, Mahadevan-Jansen A. Phys Med Biol; 2006 Apr 21; 51(8):2011-27. PubMed ID: 16585842 [Abstract] [Full Text] [Related]
10. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Taroni P, Torricelli A, Spinelli L, Pifferi A, Arpaia F, Danesini G, Cubeddu R. Phys Med Biol; 2005 Jun 07; 50(11):2469-88. PubMed ID: 15901949 [Abstract] [Full Text] [Related]
11. Changes in breast hemodynamics in breastfeeding mothers. Ogawa K, Kusaka T, Tanimoto K, Nishida T, Isobe K, Itoh S. J Hum Lact; 2008 Nov 07; 24(4):415-21. PubMed ID: 18784323 [Abstract] [Full Text] [Related]
12. Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation. Liu H, Radhakrishnan H, Senapati AK, Hagains CE, Peswani D, Mathker A, Peng YB. Neuroimage; 2008 Mar 01; 40(1):217-27. PubMed ID: 18191588 [Abstract] [Full Text] [Related]
13. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Srinivasan S, Song X, Tosteson TD, Poplack SP, Paulsen KD. J Biomed Opt; 2004 Mar 01; 9(3):541-52. PubMed ID: 15189092 [Abstract] [Full Text] [Related]
14. Scattering and absorption effects in the determination of glucose in whole blood by near-infrared spectroscopy. Amerov AK, Chen J, Small GW, Arnold MA. Anal Chem; 2005 Jul 15; 77(14):4587-94. PubMed ID: 16013877 [Abstract] [Full Text] [Related]
15. [The influence of probe geometry on the sensitivity of tissue oximeter using near infra-red spectroscopy]. Wang F, Ding H, Lin F. Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug 15; 20(4):585-8. PubMed ID: 12945385 [Abstract] [Full Text] [Related]
16. Physiologic changes in breast magnetic resonance imaging during the menstrual cycle: perfusion imaging, signal enhancement, and influence of the T1 relaxation time of breast tissue. Delille JP, Slanetz PJ, Yeh ED, Kopans DB, Garrido L. Breast J; 2005 Aug 15; 11(4):236-41. PubMed ID: 15982388 [Abstract] [Full Text] [Related]
17. Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A, Cubeddu R. Opt Express; 2009 Aug 31; 17(18):15932-46. PubMed ID: 19724592 [Abstract] [Full Text] [Related]
18. Noninvasive functional optical spectroscopy of human breast tissue. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B. Proc Natl Acad Sci U S A; 2001 Apr 10; 98(8):4420-5. PubMed ID: 11287650 [Abstract] [Full Text] [Related]
19. Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography. Boverman G, Fang Q, Carp SA, Miller EL, Brooks DH, Selb J, Moore RH, Kopans DB, Boas DA. Phys Med Biol; 2007 Jun 21; 52(12):3619-41. PubMed ID: 17664563 [Abstract] [Full Text] [Related]
20. Regional difference of water content in human skin studied by diffuse-reflectance near-infrared spectroscopy: consideration of measurement depth. Egawa M, Arimoto H, Hirao T, Takahashi M, Ozaki Y. Appl Spectrosc; 2006 Jan 21; 60(1):24-8. PubMed ID: 16454907 [Abstract] [Full Text] [Related] Page: [Next] [New Search]