These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 1099067

  • 1. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H, Surdin-Kerjan Y, De Robichon-Szulmajster H.
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [Abstract] [Full Text] [Related]

  • 2. Methionyl-transfer ribonucleic acid deficiency during G1 arrest of Saccharomyces cerevisiae.
    Unger MW.
    J Bacteriol; 1977 Apr; 130(1):11-9. PubMed ID: 323218
    [Abstract] [Full Text] [Related]

  • 3. Role of methionyl-transfer ribonucleic acid in the regulation of methionyl-transfer ribonucleic acid synthetase of Escherichia coli K-12.
    Cassio D.
    J Bacteriol; 1975 Aug; 123(2):589-97. PubMed ID: 1097419
    [Abstract] [Full Text] [Related]

  • 4. Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine.
    Surdin-Kerjan Y, Cherest H, De Robichon-Szulmajster H.
    Acta Microbiol Acad Sci Hung; 1976 Aug; 23(2):109-20. PubMed ID: 788467
    [Abstract] [Full Text] [Related]

  • 5. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H, Surdin-Kerjan Y, Robichon-Szulmajster H.
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [Abstract] [Full Text] [Related]

  • 6. Relationship between methionyl transfer ribonucleic acid cellular content and synthesis of methionine enzymes in Saccharomyces cerevisiae.
    Surdin-Kerjan Y, Cherest H, Robichon-Szulmajster H.
    J Bacteriol; 1973 Mar; 113(3):1156-60. PubMed ID: 4570771
    [Abstract] [Full Text] [Related]

  • 7. Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12.
    Cassio D, Mathien Y, Waller JP.
    J Bacteriol; 1975 Aug; 123(2):580-8. PubMed ID: 1097418
    [Abstract] [Full Text] [Related]

  • 8. Regulation of methionyl-transfer ribonucleic acid synthetase formation in Escherichia coli and Salmonella typhimurium.
    Archibold ER, Williams LS.
    J Bacteriol; 1973 Jun; 114(3):1007-13. PubMed ID: 4576394
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae.
    Cherest H, Surdin-Kerjan Y, Antoniewski J, Robichon-Szulmajster H.
    J Bacteriol; 1973 Jun; 114(3):928-33. PubMed ID: 4576408
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Structure and expression of two aminoacyl-tRNA synthetase genes from Saccharomyces cerevisiae.
    Meussdoerffer F, Fink GR.
    J Biol Chem; 1983 May 25; 258(10):6293-9. PubMed ID: 6304034
    [Abstract] [Full Text] [Related]

  • 15. Expression of the aminoacyl-tRNA synthetase complex in cultured Chinese hamster ovary cells. Specific depression of the methionyl-tRNA synthetase component upon methionine restriction.
    Lazard M, Mirande M, Waller JP.
    J Biol Chem; 1987 Mar 25; 262(9):3982-7. PubMed ID: 3644822
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.