These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 10996340

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery.
    Najibi S, Cowan CL, Palacino JJ, Cohen RA.
    Am J Physiol; 1994 May; 266(5 Pt 2):H2061-7. PubMed ID: 7515589
    [Abstract] [Full Text] [Related]

  • 3. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R, Hiley CR.
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [Abstract] [Full Text] [Related]

  • 4. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H, Waldron GJ, Galipeau D, Cole WC, Triggle CR.
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [Abstract] [Full Text] [Related]

  • 5. [17B-estradiol and hypercholesterolemia: involvement of nitric oxide].
    Ghanam K, Javellaud J, Ea-Kim L, Oudart N.
    Ann Pharm Fr; 2000 Dec; 58(6):414-9. PubMed ID: 11148376
    [Abstract] [Full Text] [Related]

  • 6. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM, Edwards G, Weston AH, Larsson B, Högestätt ED.
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED.
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Mechanisms of NO-resistant relaxation induced by acetylcholine in rabbit renal arteries.
    Kwon SC.
    J Vet Med Sci; 2001 Jan; 63(1):37-40. PubMed ID: 11217060
    [Abstract] [Full Text] [Related]

  • 14. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D, Simonsen U, Hernández M, García-Sacristán A.
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H, Waldron GJ, Cole WC, Triggle CR.
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Calcium-sensitive potassium channel inhibitors antagonize genistein- and daidzein-induced arterial relaxation in vitro.
    Nevala R, Paukku K, Korpela R, Vapaatalo H.
    Life Sci; 2001 Aug 10; 69(12):1407-17. PubMed ID: 11531164
    [Abstract] [Full Text] [Related]

  • 20. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO.
    Najibi S, Cohen RA.
    Am J Physiol; 1995 Sep 10; 269(3 Pt 2):H805-11. PubMed ID: 7573521
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.