These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 10998570
1. Hydrophobins, the fungal coat unravelled. Wösten HA, de Vocht ML. Biochim Biophys Acta; 2000 Sep 18; 1469(2):79-86. PubMed ID: 10998570 [Abstract] [Full Text] [Related]
2. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OM, Sonveaux N, Wösten HA, Ruysschaert JM, Hadziloannou G, Wessels JG, Robillard GT. Biophys J; 1998 Apr 18; 74(4):2059-68. PubMed ID: 9545064 [Abstract] [Full Text] [Related]
3. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B, Gong Y, Gao X, Xu H, Qiao M, Li W. Amino Acids; 2014 Nov 18; 46(11):2615-25. PubMed ID: 25240738 [Abstract] [Full Text] [Related]
4. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Pham CLL, Rodríguez de Francisco B, Valsecchi I, Dazzoni R, Pillé A, Lo V, Ball SR, Cappai R, Wien F, Kwan AH, Guijarro JI, Sunde M. J Mol Biol; 2018 Oct 12; 430(20):3784-3801. PubMed ID: 30096347 [Abstract] [Full Text] [Related]
5. Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry. Wang X, Permentier HP, Rink R, Kruijtzer JA, Liskamp RM, Wösten HA, Poolman B, Robillard GT. Biophys J; 2004 Sep 12; 87(3):1919-28. PubMed ID: 15345568 [Abstract] [Full Text] [Related]
6. Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates. de Vocht ML, Reviakine I, Ulrich WP, Bergsma-Schutter W, Wösten HA, Vogel H, Brisson A, Wessels JG, Robillard GT. Protein Sci; 2002 May 12; 11(5):1199-205. PubMed ID: 11967376 [Abstract] [Full Text] [Related]
7. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Zykwinska A, Guillemette T, Bouchara JP, Cuenot S. Biochim Biophys Acta; 2014 Jul 12; 1844(7):1231-7. PubMed ID: 24732577 [Abstract] [Full Text] [Related]
8. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q, Kwan AH, Sunde M. Proteins; 2014 Jun 12; 82(6):990-1003. PubMed ID: 24218020 [Abstract] [Full Text] [Related]
9. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Askolin S, Linder M, Scholtmeijer K, Tenkanen M, Penttilä M, de Vocht ML, Wösten HA. Biomacromolecules; 2006 Apr 12; 7(4):1295-301. PubMed ID: 16602752 [Abstract] [Full Text] [Related]
10. Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins. Ball SR, Pham CLL, Lo V, Morris VK, Kwan AH, Sunde M. Methods Mol Biol; 2020 Apr 12; 2073():55-72. PubMed ID: 31612436 [Abstract] [Full Text] [Related]
11. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S. Biochim Biophys Acta; 2014 Jun 12; 1844(6):1137-44. PubMed ID: 24631542 [Abstract] [Full Text] [Related]
12. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Cheng Y, Wang B, Wang Y, Zhang H, Liu C, Yang L, Chen Z, Wang Y, Yang H, Wang Z. J Colloid Interface Sci; 2020 Aug 01; 573():384-395. PubMed ID: 32298932 [Abstract] [Full Text] [Related]
13. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. Fan H, Wang X, Zhu J, Robillard GT, Mark AE. Proteins; 2006 Sep 01; 64(4):863-73. PubMed ID: 16770796 [Abstract] [Full Text] [Related]
14. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties. Wang X, Shi F, Wösten HA, Hektor H, Poolman B, Robillard GT. Biophys J; 2005 May 01; 88(5):3434-43. PubMed ID: 15749774 [Abstract] [Full Text] [Related]
15. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Niu B, Li B, Wang H, Guo R, Xu H, Qiao M, Li W. Colloids Surf B Biointerfaces; 2017 Feb 01; 150():344-351. PubMed ID: 27842929 [Abstract] [Full Text] [Related]
16. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK, Sunde M. Methods Mol Biol; 2013 Feb 01; 996():119-29. PubMed ID: 23504421 [Abstract] [Full Text] [Related]
17. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A, Weich S, Szilvay GR, Leitner M, Tappura K, Ebner A. J Biol Chem; 2021 Feb 01; 296():100728. PubMed ID: 33933454 [Abstract] [Full Text] [Related]
18. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered β-sheet core amidst structural heterogeneity. Morris VK, Linser R, Wilde KL, Duff AP, Sunde M, Kwan AH. Angew Chem Int Ed Engl; 2012 Dec 07; 51(50):12621-5. PubMed ID: 23125123 [Abstract] [Full Text] [Related]
19. Hydrophobins: multipurpose proteins. Wösten HA. Annu Rev Microbiol; 2001 Dec 07; 55():625-46. PubMed ID: 11544369 [Abstract] [Full Text] [Related]
20. The use of hydrophobins to functionalize surfaces. Scholtmeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HA. Biomed Mater Eng; 2004 Dec 07; 14(4):447-54. PubMed ID: 15472393 [Abstract] [Full Text] [Related] Page: [Next] [New Search]