These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 11003050

  • 1. Importance of iron location in iron-induced hydroxyl radical production by brain slices.
    Demougeot C, Marie C, Beley A.
    Life Sci; 2000 Jun 16; 67(4):399-410. PubMed ID: 11003050
    [Abstract] [Full Text] [Related]

  • 2. Effect of intracellular iron loading on lipid peroxidation of brain slices.
    Oubidar M, Boquillon M, Marie C, Bouvier C, Beley A, Bralet J.
    Free Radic Biol Med; 1996 Jun 16; 21(6):763-9. PubMed ID: 8902522
    [Abstract] [Full Text] [Related]

  • 3. Effects of increasing intracellular reactive iron level on cardiac function and oxidative injury in the isolated rat heart.
    Oubidar M, Marie C, Mossiat C, Bralet J.
    J Mol Cell Cardiol; 1996 Aug 16; 28(8):1769-76. PubMed ID: 8877786
    [Abstract] [Full Text] [Related]

  • 4. Estimation of hydroxyl radical generation by salicylate hydroxylation method in kidney of mice exposed to ferric nitrilotriacetate and potassium bromate.
    Ueno S, Kashimoto T, Susa N, Shiho K, Seki T, Ito N, Takeda-Homma S, Nishimura Y, Sugiyama M.
    Free Radic Res; 2007 Nov 16; 41(11):1246-52. PubMed ID: 17907000
    [Abstract] [Full Text] [Related]

  • 5. The iron chelator pyridoxal isonicotinoyl hydrazone inhibits mitochondrial lipid peroxidation induced by Fe(II)-citrate.
    Santos NC, Castilho RF, Meinicke AR, Hermes-Lima M.
    Eur J Pharmacol; 2001 Sep 28; 428(1):37-44. PubMed ID: 11779035
    [Abstract] [Full Text] [Related]

  • 6. Iron (III) attenuates hydroxyl radical generation accompanying non-enzymatic oxidation of noradrenaline in the rat heart.
    Obata T, Yamanaka Y.
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Feb 28; 365(2):158-63. PubMed ID: 11819034
    [Abstract] [Full Text] [Related]

  • 7. Effects of a direct injection of liposoluble iron into rat striatum. Importance of the rate of iron delivery to cells.
    Demougeot C, Méthy D, Prigent-Tessier A, Garnier P, Bertrand N, Guilland JC, Beley A, Marie C.
    Free Radic Res; 2003 Jan 28; 37(1):59-67. PubMed ID: 12653218
    [Abstract] [Full Text] [Related]

  • 8. Effect of desferrioxamine, a strong iron (III) chelator, on 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in the rat striatum.
    Obata T.
    Eur J Pharmacol; 2006 Jun 06; 539(1-2):34-8. PubMed ID: 16650845
    [Abstract] [Full Text] [Related]

  • 9. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C, Vile GF, Winterbourn CC.
    Biochem Pharmacol; 1993 May 25; 45(10):1967-72. PubMed ID: 8390256
    [Abstract] [Full Text] [Related]

  • 10. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1989 Dec 25; 275(2):540-50. PubMed ID: 2556968
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.
    Rabion A, Verlhac JB, Fraisse L, Roche B, Seris JL.
    Free Radic Res Commun; 1993 Dec 25; 19(6):409-23. PubMed ID: 8168730
    [Abstract] [Full Text] [Related]

  • 12. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F).
    Althaus JS, Andrus PK, Williams CM, VonVoigtlander PF, Cazers AR, Hall ED.
    Mol Chem Neuropathol; 1993 Oct 25; 20(2):147-62. PubMed ID: 8297419
    [Abstract] [Full Text] [Related]

  • 13. Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe-ascorbate- and Fe-microsomal systems.
    Ozgová S, Hermánek J, Gut I.
    Biochem Pharmacol; 2003 Oct 01; 66(7):1127-37. PubMed ID: 14505792
    [Abstract] [Full Text] [Related]

  • 14. Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate.
    Andreu GP, Delgado R, Velho JA, Curti C, Vercesi AE.
    Eur J Pharmacol; 2005 Apr 18; 513(1-2):47-55. PubMed ID: 15878708
    [Abstract] [Full Text] [Related]

  • 15. In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia.
    Chiueh CC, Wu RM, Mohanakumar KP, Sternberger LM, Krishna G, Obata T, Murphy DL.
    Ann N Y Acad Sci; 1994 Nov 17; 738():25-36. PubMed ID: 7832434
    [Abstract] [Full Text] [Related]

  • 16. Lipid peroxidation of human granulocytes (PMN) and monocytes by iron complexes.
    Hoepelman IM, Bezemer WA, van Doornmalen E, Verhoef J, Marx JJ.
    Br J Haematol; 1989 Aug 17; 72(4):584-8. PubMed ID: 2641670
    [Abstract] [Full Text] [Related]

  • 17. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation.
    Puntarulo S, Cederbaum AI.
    Arch Biochem Biophys; 1988 Aug 01; 264(2):482-91. PubMed ID: 2840858
    [Abstract] [Full Text] [Related]

  • 18. Measurement of loosely-bound iron in brain regions using redox cycling and salicylate.
    Nelson SR, Pazdernik TL, samson FE.
    Cell Mol Biol (Noisy-le-grand); 2000 May 01; 46(3):649-55. PubMed ID: 10872751
    [Abstract] [Full Text] [Related]

  • 19. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E, Cederbaum AI.
    Arch Biochem Biophys; 1990 Dec 01; 283(2):326-33. PubMed ID: 2275546
    [Abstract] [Full Text] [Related]

  • 20. Induction of free radicals and tumors in the kidneys of Wistar rats by ferric ethylenediamine-N,N'-diacetate.
    Liu M, Okada S.
    Carcinogenesis; 1994 Dec 01; 15(12):2817-21. PubMed ID: 8001240
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.