These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
305 related items for PubMed ID: 11007868
1. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. Ricci AJ, Crawford AC, Fettiplace R. J Neurosci; 2000 Oct 01; 20(19):7131-42. PubMed ID: 11007868 [Abstract] [Full Text] [Related]
2. Mechanisms of active hair bundle motion in auditory hair cells. Ricci AJ, Crawford AC, Fettiplace R. J Neurosci; 2002 Jan 01; 22(1):44-52. PubMed ID: 11756487 [Abstract] [Full Text] [Related]
3. Activation and adaptation of transducer currents in turtle hair cells. Crawford AC, Evans MG, Fettiplace R. J Physiol; 1989 Dec 01; 419():405-34. PubMed ID: 2621635 [Abstract] [Full Text] [Related]
4. Differences in mechano-transducer channel kinetics underlie tonotopic distribution of fast adaptation in auditory hair cells. Ricci A. J Neurophysiol; 2002 Apr 01; 87(4):1738-48. PubMed ID: 11929895 [Abstract] [Full Text] [Related]
5. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. Ricci AJ, Wu YC, Fettiplace R. J Neurosci; 1998 Oct 15; 18(20):8261-77. PubMed ID: 9763471 [Abstract] [Full Text] [Related]
6. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Beurg M, Nam JH, Crawford A, Fettiplace R. Biophys J; 2008 Apr 01; 94(7):2639-53. PubMed ID: 18178649 [Abstract] [Full Text] [Related]
7. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. Crawford AC, Evans MG, Fettiplace R. J Physiol; 1991 Mar 01; 434():369-98. PubMed ID: 1708822 [Abstract] [Full Text] [Related]
8. Hair Bundle Stimulation Mode Modifies Manifestations of Mechanotransduction Adaptation. Caprara GA, Mecca AA, Wang Y, Ricci AJ, Peng AW. J Neurosci; 2019 Nov 13; 39(46):9098-9106. PubMed ID: 31578232 [Abstract] [Full Text] [Related]
9. The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. Kimitsuki T, Ohmori H. J Physiol; 1992 Dec 13; 458():27-40. PubMed ID: 1284566 [Abstract] [Full Text] [Related]
10. Biophysical and pharmacological characterization of voltage-gated calcium currents in turtle auditory hair cells. Schnee ME, Ricci AJ. J Physiol; 2003 Jun 15; 549(Pt 3):697-717. PubMed ID: 12740421 [Abstract] [Full Text] [Related]
11. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. Ricci AJ, Fettiplace R. J Physiol; 1998 Jan 01; 506 ( Pt 1)(Pt 1):159-73. PubMed ID: 9481679 [Abstract] [Full Text] [Related]
12. The mechanical properties of ciliary bundles of turtle cochlear hair cells. Crawford AC, Fettiplace R. J Physiol; 1985 Jul 01; 364():359-79. PubMed ID: 4032304 [Abstract] [Full Text] [Related]
13. Depolarization of cochlear outer hair cells evokes active hair bundle motion by two mechanisms. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R. J Neurosci; 2006 Mar 08; 26(10):2757-66. PubMed ID: 16525055 [Abstract] [Full Text] [Related]
14. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Corns LF, Johnson SL, Kros CJ, Marcotti W. Proc Natl Acad Sci U S A; 2014 Oct 14; 111(41):14918-23. PubMed ID: 25228765 [Abstract] [Full Text] [Related]
15. The transduction channel filter in auditory hair cells. Ricci AJ, Kennedy HJ, Crawford AC, Fettiplace R. J Neurosci; 2005 Aug 24; 25(34):7831-9. PubMed ID: 16120785 [Abstract] [Full Text] [Related]
16. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear. Bormuth V, Barral J, Joanny JF, Jülicher F, Martin P. Proc Natl Acad Sci U S A; 2014 May 20; 111(20):7185-90. PubMed ID: 24799674 [Abstract] [Full Text] [Related]
17. Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. Corns LF, Johnson SL, Kros CJ, Marcotti W. J Neurosci; 2016 Jan 13; 36(2):336-49. PubMed ID: 26758827 [Abstract] [Full Text] [Related]
18. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Kennedy HJ, Evans MG, Crawford AC, Fettiplace R. Nat Neurosci; 2003 Aug 13; 6(8):832-6. PubMed ID: 12872124 [Abstract] [Full Text] [Related]
19. Voltage-Mediated Control of Spontaneous Bundle Oscillations in Saccular Hair Cells. Meenderink SW, Quiñones PM, Bozovic D. J Neurosci; 2015 Oct 28; 35(43):14457-66. PubMed ID: 26511238 [Abstract] [Full Text] [Related]
20. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Assad JA, Hacohen N, Corey DP. Proc Natl Acad Sci U S A; 1989 Apr 28; 86(8):2918-22. PubMed ID: 2468161 [Abstract] [Full Text] [Related] Page: [Next] [New Search]