These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 11014862

  • 21. Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release.
    Kline JT, Kline D.
    Biol Reprod; 1994 Jan; 50(1):193-203. PubMed ID: 8312443
    [Abstract] [Full Text] [Related]

  • 22. Calcium-induced calcium release in neurosecretory insect neurons: fast and slow responses.
    Messutat S, Heine M, Wicher D.
    Cell Calcium; 2001 Sep; 30(3):199-211. PubMed ID: 11508999
    [Abstract] [Full Text] [Related]

  • 23. Basal and physiological Ca(2+) leak from the endoplasmic reticulum of pancreatic acinar cells. Second messenger-activated channels and translocons.
    Lomax RB, Camello C, Van Coppenolle F, Petersen OH, Tepikin AV.
    J Biol Chem; 2002 Jul 19; 277(29):26479-85. PubMed ID: 11994289
    [Abstract] [Full Text] [Related]

  • 24. Mechanisms of calcium release and sequestration in eggs of Chaetopterus pergamentaceus.
    Thomas TW, Eckberg WR, Dubé F, Galione A.
    Cell Calcium; 1998 Oct 19; 24(4):285-92. PubMed ID: 9883282
    [Abstract] [Full Text] [Related]

  • 25. Cyclic ADP-ribose-dependent Ca2+ release is modulated by free [Ca2+] in the scallop sarcoplasmic reticulum.
    Panfoli I, Burlando B, Viarengo A.
    Biochem Biophys Res Commun; 1999 Apr 02; 257(1):57-62. PubMed ID: 10092509
    [Abstract] [Full Text] [Related]

  • 26. Cyclic ADP-ribose induces Ca2+ release from caffeine-insensitive Ca2+ pools in canine salivary gland cells.
    Yamaki H, Morita K, Kitayama S, Imai Y, Itadani K, Akagawa Y, Dohi T.
    J Dent Res; 1998 Oct 02; 77(10):1807-16. PubMed ID: 9786637
    [Abstract] [Full Text] [Related]

  • 27. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.
    Zhu MH, Sung TS, O'Driscoll K, Koh SD, Sanders KM.
    Am J Physiol Cell Physiol; 2015 Apr 15; 308(8):C608-20. PubMed ID: 25631870
    [Abstract] [Full Text] [Related]

  • 28. Elevation of mitochondrial calcium by ryanodine-sensitive calcium-induced calcium release.
    Nassar A, Simpson AW.
    J Biol Chem; 2000 Aug 04; 275(31):23661-5. PubMed ID: 10821828
    [Abstract] [Full Text] [Related]

  • 29. Inositol 1,4,5-trisphosphate directs Ca(2+) flow between mitochondria and the Endoplasmic/Sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca(2+) spiking.
    Jaconi M, Bony C, Richards SM, Terzic A, Arnaudeau S, Vassort G, Pucéat M.
    Mol Biol Cell; 2000 May 04; 11(5):1845-58. PubMed ID: 10793156
    [Abstract] [Full Text] [Related]

  • 30. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria.
    Straub SV, Giovannucci DR, Yule DI.
    J Gen Physiol; 2000 Oct 04; 116(4):547-60. PubMed ID: 11004204
    [Abstract] [Full Text] [Related]

  • 31. Ryanodine receptors in liver.
    Pierobon N, Renard-Rooney DC, Gaspers LD, Thomas AP.
    J Biol Chem; 2006 Nov 10; 281(45):34086-95. PubMed ID: 16973607
    [Abstract] [Full Text] [Related]

  • 32. Inositol trisphosphate producing agonists do not mobilize the thapsigargin-insensitive part of the endoplasmic-reticulum and Golgi Ca2+ store.
    Vanoevelen J, Raeymaekers L, Parys JB, De Smedt H, Van Baelen K, Callewaert G, Wuytack F, Missiaen L.
    Cell Calcium; 2004 Feb 10; 35(2):115-21. PubMed ID: 14706285
    [Abstract] [Full Text] [Related]

  • 33. Dynamic properties of an inositol 1,4,5-trisphosphate- and thapsigargin-insensitive calcium pool in mammalian cell lines.
    Pizzo P, Fasolato C, Pozzan T.
    J Cell Biol; 1997 Jan 27; 136(2):355-66. PubMed ID: 9015306
    [Abstract] [Full Text] [Related]

  • 34. Functional coupling between ryanodine receptors, mitochondria and Ca(2+) ATPases in rat submandibular acinar cells.
    Kopach O, Kruglikov I, Pivneva T, Voitenko N, Fedirko N.
    Cell Calcium; 2008 May 27; 43(5):469-81. PubMed ID: 17889347
    [Abstract] [Full Text] [Related]

  • 35. Calcium transient activity in cultured murine neural crest cells is regulated at the IP(3) receptor.
    Carey MB, Matsumoto SG.
    Brain Res; 2000 Apr 17; 862(1-2):201-10. PubMed ID: 10799686
    [Abstract] [Full Text] [Related]

  • 36. Angiotensin II Ca2+ signaling in rat afferent arterioles: stimulation of cyclic ADP ribose and IP3 pathways.
    Fellner SK, Arendshorst WJ.
    Am J Physiol Renal Physiol; 2005 Apr 17; 288(4):F785-91. PubMed ID: 15598842
    [Abstract] [Full Text] [Related]

  • 37. The role of ryanodine receptors in the cyclic ADP ribose modulation of the M-like current in rodent m1 muscarinic receptor-transformed NG108-15 cells.
    Bowden SE, Selyanko AA, Robbins J.
    J Physiol; 1999 Aug 15; 519 Pt 1(Pt 1):23-34. PubMed ID: 10432336
    [Abstract] [Full Text] [Related]

  • 38. The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca(2+) signaling of airway smooth muscle cells.
    Bai Y, Edelmann M, Sanderson MJ.
    Am J Physiol Lung Cell Mol Physiol; 2009 Aug 15; 297(2):L347-61. PubMed ID: 19465516
    [Abstract] [Full Text] [Related]

  • 39. Focal sarcoplasmic reticulum calcium stores and diffuse inositol 1,4,5-trisphosphate and ryanodine receptors in human myometrium.
    Young RC, Mathur SP.
    Cell Calcium; 1999 Aug 15; 26(1-2):69-75. PubMed ID: 10892572
    [Abstract] [Full Text] [Related]

  • 40. Role of InsP3 and ryanodine receptors in the activation of capacitative Ca2+ entry by store depletion or hypoxia in canine pulmonary arterial smooth muscle cells.
    Ng LC, Wilson SM, McAllister CE, Hume JR.
    Br J Pharmacol; 2007 Sep 15; 152(1):101-11. PubMed ID: 17592501
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.