These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 11015193
1. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. Ames JB, Hendricks KB, Strahl T, Huttner IG, Hamasaki N, Thorner J. Biochemistry; 2000 Oct 10; 39(40):12149-61. PubMed ID: 11015193 [Abstract] [Full Text] [Related]
2. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Ames JB, Hamasaki N, Molchanova T. Biochemistry; 2002 May 07; 41(18):5776-87. PubMed ID: 11980481 [Abstract] [Full Text] [Related]
3. Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1). Strahl T, Huttner IG, Lusin JD, Osawa M, King D, Thorner J, Ames JB. J Biol Chem; 2007 Oct 19; 282(42):30949-59. PubMed ID: 17720810 [Abstract] [Full Text] [Related]
4. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance. Hamasaki-Katagiri N, Molchanova T, Takeda K, Ames JB. J Biol Chem; 2004 Mar 26; 279(13):12744-54. PubMed ID: 14722091 [Abstract] [Full Text] [Related]
5. Amino-terminal myristoylation induces cooperative calcium binding to recoverin. Ames JB, Porumb T, Tanaka T, Ikura M, Stryer L. J Biol Chem; 1995 Mar 03; 270(9):4526-33. PubMed ID: 7876221 [Abstract] [Full Text] [Related]
6. Calcium-dependent solvation of the myristoyl group of recoverin. Hughes RE, Brzovic PS, Klevit RE, Hurley JB. Biochemistry; 1995 Sep 12; 34(36):11410-6. PubMed ID: 7547868 [Abstract] [Full Text] [Related]
7. Nuclear magnetic resonance evidence for Ca(2+)-induced extrusion of the myristoyl group of recoverin. Ames JB, Tanaka T, Ikura M, Stryer L. J Biol Chem; 1995 Dec 29; 270(52):30909-13. PubMed ID: 8537345 [Abstract] [Full Text] [Related]
8. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Ames JB, Tanaka T, Stryer L, Ikura M. Biochemistry; 1994 Sep 06; 33(35):10743-53. PubMed ID: 8075075 [Abstract] [Full Text] [Related]
9. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3. Li C, Lim S, Braunewell KH, Ames JB. PLoS One; 2016 Sep 06; 11(11):e0165921. PubMed ID: 27820860 [Abstract] [Full Text] [Related]
10. How can Ca2+ selectively activate recoverin in the presence of Mg2+? Surface plasmon resonance and FT-IR spectroscopic studies. Ozawa T, Fukuda M, Nara M, Nakamura A, Komine Y, Kohama K, Umezawa Y. Biochemistry; 2000 Nov 28; 39(47):14495-503. PubMed ID: 11087403 [Abstract] [Full Text] [Related]