These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 11020827
21. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply from PET measurements using the 11C-acetate kinetic model. Chen S, Feng D. IEEE Trans Biomed Eng; 2004 Sep; 51(9):1579-85. PubMed ID: 15376506 [Abstract] [Full Text] [Related]
22. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney. Feng T, Tsui BM, Li X, Vranesic M, Lodge MA, Gulaldi NC, Szabo Z. Med Phys; 2015 Nov; 42(11):6736-44. PubMed ID: 26520763 [Abstract] [Full Text] [Related]
23. Fast parametric imaging algorithm for dual-input biomedical system parameter estimation. Choi HC, Chen S, Feng D, Wong KP. Comput Methods Programs Biomed; 2006 Jan; 81(1):49-55. PubMed ID: 16376452 [Abstract] [Full Text] [Related]
24. Effects of tracer blood measurement noise on glucose metabolic rate estimation. Feng D, Wang X, Fulton R, Hutton B, Morris J. Biomed Sci Instrum; 1991 Jan; 27():43-8. PubMed ID: 2065176 [Abstract] [Full Text] [Related]
25. Indirect methods for improving parameter estimation of PET kinetic models. Huang HM, Liu CC, Lin C. Med Phys; 2019 Apr; 46(4):1777-1784. PubMed ID: 30762875 [Abstract] [Full Text] [Related]
26. Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. Iida H, Miura S, Shoji Y, Ogawa T, Kado H, Narita Y, Hatazawa J, Eberl S, Kanno I, Uemura K. J Nucl Med; 1998 Oct; 39(10):1789-98. PubMed ID: 9776289 [Abstract] [Full Text] [Related]
27. An open tool for input function estimation and quantification of dynamic PET FDG brain scans. Bertrán M, Martínez N, Carbajal G, Fernández A, Gómez Á. Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1419-30. PubMed ID: 26514683 [Abstract] [Full Text] [Related]
28. Assessment of brain glucose metabolism with input function determined from brain PET images by means of Bayesian ICA and MCMC methods. Berradja K, Boughanmi N. Comput Med Imaging Graph; 2012 Dec; 36(8):620-6. PubMed ID: 22884568 [Abstract] [Full Text] [Related]
29. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Millet P, Graf C, Buck A, Walder B, Ibáñez V. Neuroimage; 2002 Oct; 17(2):928-42. PubMed ID: 12377167 [Abstract] [Full Text] [Related]
30. Validation of noninvasive quantification of rCBF compared with dynamic/integral method by using positron emission tomography and oxygen-15 labeled water. Watabe H, Itoh M, Mejia M, Fujiwara T, Jones T, Nakamura T. Ann Nucl Med; 1995 Nov; 9(4):191-8. PubMed ID: 8770285 [Abstract] [Full Text] [Related]
31. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, Yun LS, Palant A. J Cereb Blood Flow Metab; 1998 Jul; 18(7):716-23. PubMed ID: 9663501 [Abstract] [Full Text] [Related]
33. An activity-subspace approach for estimating the integrated input function and relative distribution volume in PET parametric imaging. Qiu P, Wang ZJ, Liu KJ, Szabo Z. IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):25-36. PubMed ID: 19129021 [Abstract] [Full Text] [Related]
34. Compartment modeling of dynamic brain PET--the impact of scatter corrections on parameter errors. Häggström I, Schmidtlein CR, Karlsson M, Larsson A. Med Phys; 2014 Nov; 41(11):111907. PubMed ID: 25370640 [Abstract] [Full Text] [Related]
35. Quantitative hemodynamic PET imaging using image-derived arterial input function and a PET/MR hybrid scanner. Su Y, Vlassenko AG, Couture LE, Benzinger TL, Snyder AZ, Derdeyn CP, Raichle ME. J Cereb Blood Flow Metab; 2017 Apr; 37(4):1435-1446. PubMed ID: 27401805 [Abstract] [Full Text] [Related]
36. Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function. Zanotti-Fregonara P, Maroy R, Comtat C, Jan S, Gaura V, Bar-Hen A, Ribeiro MJ, Trébossen R. J Nucl Med; 2009 Mar; 50(3):461-7. PubMed ID: 19223421 [Abstract] [Full Text] [Related]
37. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: application to focal cerebral ischemia. Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, Mies G. J Nucl Med; 2011 Aug; 52(8):1252-60. PubMed ID: 21764786 [Abstract] [Full Text] [Related]
38. Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images. Stute S, Carlier T, Cristina K, Noblet C, Martineau A, Hutton B, Barnden L, Buvat I. Phys Med Biol; 2011 Oct 07; 56(19):6441-57. PubMed ID: 21934192 [Abstract] [Full Text] [Related]
39. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with 15O-Gas Inhalation. Magota K, Shiga T, Asano Y, Shinyama D, Ye J, Perkins AE, Maniawski PJ, Toyonaga T, Kobayashi K, Hirata K, Katoh C, Hattori N, Tamaki N. J Nucl Med; 2017 Dec 07; 58(12):2020-2025. PubMed ID: 28646012 [Abstract] [Full Text] [Related]
40. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Fang YH, Kao T, Liu RS, Wu LC. Eur J Nucl Med Mol Imaging; 2004 May 07; 31(5):692-702. PubMed ID: 14740178 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]