These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 11023751

  • 1. Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima diakonoff (Lepidoptera: tortricidae).
    Takatsuka J, Kunimi Y.
    J Invertebr Pathol; 2000 Oct; 76(3):222-6. PubMed ID: 11023751
    [Abstract] [Full Text] [Related]

  • 2. Fate of Bacillus thuringiensis strains in different insect larvae.
    Suzuki MT, Lereclus D, Arantes OM.
    Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915
    [Abstract] [Full Text] [Related]

  • 3. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections.
    El-Aziz NM, Awad HH.
    Micron; 2010 Apr; 41(3):203-9. PubMed ID: 20056427
    [Abstract] [Full Text] [Related]

  • 4. Midgut bacteria required for Bacillus thuringiensis insecticidal activity.
    Broderick NA, Raffa KF, Handelsman J.
    Proc Natl Acad Sci U S A; 2006 Oct 10; 103(41):15196-9. PubMed ID: 17005725
    [Abstract] [Full Text] [Related]

  • 5. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm.
    van Frankenhuyzen K, Liu Y, Tonon A.
    J Invertebr Pathol; 2010 Feb 10; 103(2):124-31. PubMed ID: 20035766
    [Abstract] [Full Text] [Related]

  • 6. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae.
    Prabhakar A, Bishop AH.
    J Invertebr Pathol; 2009 Mar 10; 100(3):193-4. PubMed ID: 19232351
    [Abstract] [Full Text] [Related]

  • 7. [Interrelationship between the intestinal microflora of lackey moth, brown-tail moth and the entomopathogenic bacterium Bacillus thuringiensis].
    Rizvanov K.
    Mikrobiologiia; 1975 Mar 10; 44(6):1074-80. PubMed ID: 2842
    [Abstract] [Full Text] [Related]

  • 8. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host.
    Raymond B, Lijek RS, Griffiths RI, Bonsall MB.
    J Invertebr Pathol; 2008 Sep 10; 99(1):103-11. PubMed ID: 18533180
    [Abstract] [Full Text] [Related]

  • 9. Molecular and phenotypic characterisation of Bacillus thuringiensis isolated during epizootics in Cydia pomonella L.
    Konecka E, Kaznowski A, Ziemnicka J, Ziemnicki K.
    J Invertebr Pathol; 2007 Jan 10; 94(1):56-63. PubMed ID: 17027023
    [Abstract] [Full Text] [Related]

  • 10. Competition and reproduction in mixed infections of pathogenic and non-pathogenic Bacillus spp.
    Raymond B, Davis D, Bonsall MB.
    J Invertebr Pathol; 2007 Oct 10; 96(2):151-5. PubMed ID: 17467004
    [Abstract] [Full Text] [Related]

  • 11. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops.
    Damgaard PH, Hansen BM, Pedersen JC, Eilenberg J.
    J Appl Microbiol; 1997 Feb 10; 82(2):253-8. PubMed ID: 12452602
    [Abstract] [Full Text] [Related]

  • 12. Does a polyphagous caterpillar have the same gut microbiota when feeding on different species of food plants?
    Sittenfeld A, Uribe-Lorío L, Mora M, Nielsen V, Arrieta G, Janzen DH.
    Rev Biol Trop; 2002 Jun 10; 50(2):547-60. PubMed ID: 12298285
    [Abstract] [Full Text] [Related]

  • 13. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella.
    Raymond B, Elliot SL, Ellis RJ.
    J Invertebr Pathol; 2008 Jul 10; 98(3):307-13. PubMed ID: 18336832
    [Abstract] [Full Text] [Related]

  • 14. Effect of sublethal concentration of Bacillus thuringiensis var. kurstaki on food and developmental needs of the american bollworm, Helicoverpa armigera (Hübner).
    Gujar GT, Kalia V, Kumari A.
    Indian J Exp Biol; 2001 Nov 10; 39(11):1130-5. PubMed ID: 11906106
    [Abstract] [Full Text] [Related]

  • 15. Closely Related Male-Killing and Nonmale-Killing Wolbachia Strains in the Oriental Tea Tortrix Homona magnanima.
    Arai H, Lin SR, Nakai M, Kunimi Y, Inoue MN.
    Microb Ecol; 2020 May 10; 79(4):1011-1020. PubMed ID: 31820073
    [Abstract] [Full Text] [Related]

  • 16. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea.
    Lee DH, Cha IH, Woo DS, Ohba M.
    Can J Microbiol; 2003 Jul 10; 49(7):465-71. PubMed ID: 14569287
    [Abstract] [Full Text] [Related]

  • 17. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests.
    Kati H, Sezen K, Nalcacioglu R, Demirbag Z.
    J Microbiol; 2007 Dec 10; 45(6):553-7. PubMed ID: 18176540
    [Abstract] [Full Text] [Related]

  • 18. Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae).
    Morimoto S, Nakai M, Ono A, Kunimi Y.
    Heredity (Edinb); 2001 Oct 10; 87(Pt 4):435-40. PubMed ID: 11737291
    [Abstract] [Full Text] [Related]

  • 19. [The effects of reactive oxidants on Bacillus thuringiensis parasporal crystals].
    Wang W, Qian C, Shen J, Yang S.
    Wei Sheng Wu Xue Bao; 1999 Oct 10; 39(5):469-74. PubMed ID: 12555530
    [Abstract] [Full Text] [Related]

  • 20. Effect of temperature and relative humidity on the cellular defense response of Ephestia kuehniella larvae fed Bacillus thuringiensis.
    Mostafa AM, Fields PG, Holliday NJ.
    J Invertebr Pathol; 2005 Oct 10; 90(2):79-84. PubMed ID: 16236308
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.