These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 11025215
1. Expression of the bZIP transcription factor TCF11 and its potential dimerization partners during development. Murphy P, Kolstø A. Mech Dev; 2000 Oct; 97(1-2):141-8. PubMed ID: 11025215 [Abstract] [Full Text] [Related]
2. Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Johnsen O, Murphy P, Prydz H, Kolsto AB. Nucleic Acids Res; 1998 Jan 15; 26(2):512-20. PubMed ID: 9421508 [Abstract] [Full Text] [Related]
3. Small Maf proteins interact with the human transcription factor TCF11/Nrf1/LCR-F1. Johnsen O, Skammelsrud N, Luna L, Nishizawa M, Prydz H, Kolstø AB. Nucleic Acids Res; 1996 Nov 01; 24(21):4289-97. PubMed ID: 8932385 [Abstract] [Full Text] [Related]
4. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K. Mol Cell Biol; 1996 Nov 01; 16(11):6083-95. PubMed ID: 8887638 [Abstract] [Full Text] [Related]
5. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Katsuoka F, Yamamoto M. Gene; 2016 Jul 25; 586(2):197-205. PubMed ID: 27058431 [Abstract] [Full Text] [Related]
6. Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif. Toki T, Itoh J, Kitazawa J, Arai K, Hatakeyama K, Akasaka J, Igarashi K, Nomura N, Yokoyama M, Yamamoto M, Ito E. Oncogene; 1997 Apr 24; 14(16):1901-10. PubMed ID: 9150357 [Abstract] [Full Text] [Related]
7. The world according to Maf. Motohashi H, Shavit JA, Igarashi K, Yamamoto M, Engel JD. Nucleic Acids Res; 1997 Aug 01; 25(15):2953-59. PubMed ID: 9224592 [Abstract] [Full Text] [Related]
8. Differential induction of mafF, mafG and mafK expression by electrophile-response-element activators. Moran JA, Dahl EL, Mulcahy RT. Biochem J; 2002 Jan 15; 361(Pt 2):371-7. PubMed ID: 11772409 [Abstract] [Full Text] [Related]
9. TCF11/Nrf1 overexpression increases the intracellular glutathione level and can transactivate the gamma-glutamylcysteine synthetase (GCS) heavy subunit promoter. Myhrstad MC, Husberg C, Murphy P, Nordström O, Blomhoff R, Moskaug JO, Kolstø AB. Biochim Biophys Acta; 2001 Jan 26; 1517(2):212-9. PubMed ID: 11342101 [Abstract] [Full Text] [Related]
10. Extracellular acidification enhances DNA binding activity of MafG-FosB heterodimer. Shimokawa N, Kumaki I, Qiu CH, Ohmiya Y, Takayama K, Koibuchi N. J Cell Physiol; 2005 Oct 26; 205(1):77-85. PubMed ID: 15828020 [Abstract] [Full Text] [Related]
11. Small Maf compound mutants display central nervous system neuronal degeneration, aberrant transcription, and Bach protein mislocalization coincident with myoclonus and abnormal startle response. Katsuoka F, Motohashi H, Tamagawa Y, Kure S, Igarashi K, Engel JD, Yamamoto M. Mol Cell Biol; 2003 Feb 26; 23(4):1163-74. PubMed ID: 12556477 [Abstract] [Full Text] [Related]
12. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, Yamamoto M. Nature; 1994 Feb 10; 367(6463):568-72. PubMed ID: 8107826 [Abstract] [Full Text] [Related]
13. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M. Mol Cell Biol; 2005 Sep 10; 25(18):8044-51. PubMed ID: 16135796 [Abstract] [Full Text] [Related]
14. Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins. Yamazaki H, Katsuoka F, Motohashi H, Engel JD, Yamamoto M. Mol Cell Biol; 2012 Feb 10; 32(4):808-16. PubMed ID: 22158967 [Abstract] [Full Text] [Related]
15. Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, Engel JD. Genes Dev; 1998 Jul 15; 12(14):2164-74. PubMed ID: 9679061 [Abstract] [Full Text] [Related]
16. Activity and expression of murine small Maf family protein MafK. Igarashi K, Itoh K, Motohashi H, Hayashi N, Matuzaki Y, Nakauchi H, Nishizawa M, Yamamoto M. J Biol Chem; 1995 Mar 31; 270(13):7615-24. PubMed ID: 7706310 [Abstract] [Full Text] [Related]
17. Structure and chromosome mapping of the human small maf-genes MAFG and MAFK. Iwata T, Kogame K, Toki T, Yokoyama M, Yamamoto M, Ito E. Cytogenet Cell Genet; 1998 Mar 31; 82(1-2):88-90. PubMed ID: 9763667 [Abstract] [Full Text] [Related]
18. Expression of transcription factors during megakaryocytic differentiation of CD34+ cells from human cord blood induced by thrombopoietin. Terui K, Takahashi Y, Kitazawa J, Toki T, Yokoyama M, Ito E. Tohoku J Exp Med; 2000 Dec 31; 192(4):259-73. PubMed ID: 11286316 [Abstract] [Full Text] [Related]
19. Molecular characterization and localization of the human MAFG gene. Blank V, Knoll JH, Andrews NC. Genomics; 1997 Aug 15; 44(1):147-9. PubMed ID: 9286713 [Abstract] [Full Text] [Related]
20. Two domains of the human bZIP transcription factor TCF11 are necessary for transactivation. Husberg C, Murphy P, Martin E, Kolsto AB. J Biol Chem; 2001 May 25; 276(21):17641-52. PubMed ID: 11278371 [Abstract] [Full Text] [Related] Page: [Next] [New Search]