These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
146 related items for PubMed ID: 11027879
1. Spectroscopic imaging of radiation-induced effects in the white matter of glioma patients. Virta A, Patronas N, Raman R, Dwyer A, Barnett A, Bonavita S, Tedeschi G, Lundbom N. Magn Reson Imaging; 2000 Sep; 18(7):851-7. PubMed ID: 11027879 [Abstract] [Full Text] [Related]
2. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH. J Neurooncol; 2007 Aug; 84(1):63-9. PubMed ID: 17619225 [Abstract] [Full Text] [Related]
6. [Application of (1)H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors]. Lichy MP, Bachert P, Hamprecht F, Weber MA, Debus J, Schulz-Ertner D, Schlemmer HP, Kauczor HU. Rofo; 2006 Jun; 178(6):627-33. PubMed ID: 16703499 [Abstract] [Full Text] [Related]
7. Metabolic changes in normal-appearing white matter in patients with neuromyelitis optica and multiple sclerosis: a comparative magnetic resonance spectroscopy study. Duan Y, Liu Z, Liu Y, Huang J, Ren Z, Sun Z, Chen H, Dong H, Ye J, Li K. Acta Radiol; 2017 Sep; 58(9):1132-1137. PubMed ID: 28173728 [Abstract] [Full Text] [Related]
10. 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience. Xiong WF, Qiu SJ, Wang HZ, Lv XF. J Magn Reson Imaging; 2013 Jan; 37(1):101-8. PubMed ID: 22972703 [Abstract] [Full Text] [Related]
11. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Neuroradiology; 2010 Apr; 52(4):297-306. PubMed ID: 19834699 [Abstract] [Full Text] [Related]
12. MR spectroscopy using normalized and non-normalized metabolite ratios for differentiating recurrent brain tumor from radiation injury. Elias AE, Carlos RC, Smith EA, Frechtling D, George B, Maly P, Sundgren PC. Acad Radiol; 2011 Sep; 18(9):1101-8. PubMed ID: 21820634 [Abstract] [Full Text] [Related]
13. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, Naegele T, Ernemann U. Invest Radiol; 2013 May; 48(5):295-301. PubMed ID: 23296081 [Abstract] [Full Text] [Related]
18. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression. A study with quantitative magnetic resonance spectroscopy at 3 Tesla. Aboul-Enein F, Krssák M, Höftberger R, Prayer D, Kristoferitsch W. PLoS One; 2010 Jul 20; 5(7):e11625. PubMed ID: 20652023 [Abstract] [Full Text] [Related]
19. Axonal injury in the cerebral normal-appearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter. Narayanan S, Francis SJ, Sled JG, Santos AC, Antel S, Levesque I, Brass S, Lapierre Y, Sappey-Marinier D, Pike GB, Arnold DL. Neuroimage; 2006 Jan 15; 29(2):637-42. PubMed ID: 16126413 [Abstract] [Full Text] [Related]
20. Proton MR spectroscopic imaging in multiple sclerosis. Tedeschi G, Bonavita S, McFarland HF, Richert N, Duyn JH, Frank JA. Neuroradiology; 2002 Jan 15; 44(1):37-42. PubMed ID: 11942498 [Abstract] [Full Text] [Related] Page: [Next] [New Search]